Open Source Development
With
CVS

Karl Fogel <kfogel@red-bean.com>

Copyright (©) 1999, 2000 Karl Fogel <kfogel@red-bean.com>

This document is free software; you can redistribute and /or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

This manual describes how to use and administer CVS (Concurrent Versions System).
It is part of a larger work entitled Open Source Development With CVS; please see the
introduction for details.

This is version 1.21 of this manual.

Open Source Development With CVS

Short Contents

Introduction . o « o v o v v vt e vt o e eevesosooesosasssonnses 3
AnOverview of CVS o i v i st ittt i i i snnnsnssssassssas 5
Repository Administration « « o o o o o e v v v vvooosooosocoees 63
Advanced CVS .o ittt i it et vvnneessooessssconnesns 97
Tips And Troubleshootingovveev e, 141
CVSReference o v oo veeeeeeeseoosssososssooossoossss 157
Third-Party Tools « v v v v e v eeeneeeeeeeieeennenannnns 203
IndexX oo oo vt vttt s aoseaoesossoeasoasasssanasnas 217
A GNU General Public License « o o o o e v o0 vvveeeeoessas 219

1

Open Source Development With CVS

Table of Contents

INtroducCtioni e iie it seseesensnans 3

AnOverview of CVS ittt iiiiiiiiiennneeas D

Basic Concepts oou e 5
A Day With CVS ... s 8
Conventions Used In This Tour 8
Invoking CVS. ... 9
Accessing A Repository. ...t 10
Starting A New Project, 12
Checking Out A Working Copy 14
Version Versus Revision 16
Making A Change..........coiiieiiiiiiiiiiiiiaa... 17
Finding Out What You (And Others) Did — update And
diff ..o 17
CVS And Implied Arguments 21
Committing ... e 24
Revision Numbers...........o .. 25
Detecting And Resolving Conflicts..................... 28
Finding Out Who Did What (Browsing Log Messages) . . 30
Examining And Reverting Changes.................... 33
The Slow Method Of Reverting 34
The Fast Method Of Reverting........................ 37
Other Useful CVS Commands...............ccoooiiiiiaa. ... 38
Adding Files..... ..o 38
Adding Directories ... 38
CVS And Binary Files.............., 39
Removing Files 40
Removing Directories. 40
Renaming Files And Directories....................... 41
Avoiding Option Fatigue.................. 41
Getting Snapshots (Dates And Tagging) 42
Acceptable Date Formats............................. 45
Marking A Moment In Time (Tags) 46
Branches...... i 51
Branching Basics................. .o L 51
Merging Changes From Branch To Trunk.............. 57
Multiple Mergesooiiiiiii i 59

Creating A Tag Or Branch Without A Working Copy ... 62

v Open Source Development With CVS

Repository Administration 63
Getting And Installing CVSo ... 63
Getting And Building CVS Under Unix................ 63
Getting And Installing CVS Under Windows 65
Getting And Installing CVS On A Macintosh 66
Limitations Of The Windows And Macintosh Versions .. 67
Anatomy Of A CVS Distribution............................. 67
Informational Files........... 67
Subdirectories i 68

The Cederqvist Manual........... 69

Other Sources Of Information......................... 70
Starting A Repository 71
The Password-Authenticating Server 72
Anonymous ACCeSSt 75
Repository Structure 76
RCOS Formato e 7
What Happens When You Remove A File..................... 84
The CVSROOT/ Administrative Directory.................... 85
The config File.............. i 86

The modules File 87

The commitinfo And loginfo And rcsinfo Files.......... 89

The verifymsg And rcsinfo Files....................... 91

The taginfo File.......... 92

The cvswrappers File......... 92

The editinfo File............. 92

The notify File........ .. i 92

The checkoutlist File 93
Commit Emails..... ..o 94
Finding Out More. 94

Advanced CVS ...ttt it iiiennnnnneass 97

Watches (CVS As Telephone)cooiiiiien ... 97
How Watches Work 97
Enabling Watches In The Repository 98
Using Watches In Development 101
Ending An Editing Session........................... 102
Controlling What Actions Are Watched............... 103
Finding Out Who Is Watching What 104
Reminding People To Use Watches 106
What Watches Look Like In The Repository 108

Log Messages And Commit Emails.......................... 110

Changing A Log Message After Commit 111

Getting Rid Of A Working Copy « ... cooveveeiieiiiin. .. 112

History — A Summary Of Repository Activity 113

Annotations — A Detailed View Of Project Activity........... 116

Annotations And Branches 119

Using Keyword Expansiont 121

Going Out On A Limb (How To Work With Branches And Survive)

.. 122
Some Principles For Working With Branches.......... 123
Merging Repeatedly Into The Trunk.................. 123
The Dovetail Approach — Merging In And Out Of The

Trunk. ... 130

The Flying Fish Approach — A Simpler Way To Do It.. 131
Branches And Keyword Expansion — Natural Enemies. . 132

Tracking Third-Party Sources (Vendor Branches)............. 133
Exporting For Public Distribution........................... 137
The Humble Guru o 138

Tips And Troubleshooting................... 141

The Usual Suspectsouiiiii i 141
The Working Copy Administrative Area 141
Repository Permissions 143

General Troubleshooting Tips..........coiiiiiiinieeenen.. 144

Some Real Life Problems (With Solutions)................... 145
CVS says it is waiting for a lock; what does that mean?

... 145
CVS claims a file is failing Up-To-Date check; what do I do?
... 146
The pserver access method is not working............. 146
The pserver access method is STILL not working...... 146
My commits seem to happen in pieces instead of atomically
... 147
CVS keeps changing file permissions; why does it do that?
... 148
CVS on Windows complains it cannot find my .cvspass file;
Why? o 148
My working copy is on several different branches; help?
... 149
When I do export -d I sometimes miss recent commits.. 149
I get an error about val-tags; what should I do? 149
I am having problems with sticky tags; how do I get rid of
them?. 150
Checkouts/updates exit with error saying cannot expand
modules. 150
I cannot seem to turn off watches 150
My binary files are messed up ..., 151
CVS is not doing line-end conversion correctly......... 151
I need to remove a subdirectory in my project; how do I do
P 151
Can I copy .cvspass files or portions of them? 151
I just committed some files with the wrong log message
... 151

I need to move files around without losing revision history
... 152

vi Open Source Development With CVS

How can I get a list of all tags in a project?........... 152
How can I get a list of all projects in a repository?..... 152
Some commands fail remotely but not locally; how should I

debug? 153
I do not see my problem covered in this chapter....... 154

I think T have discovered a bug in CVS; what do I do?.. 154
I have implemented a new feature for CVS; to whom do T

send 167 ... 154
How can I keep up with changes to CVS?............. 154
CVS Referencecccvviiiiinenneennns 157
Commands And Options, 157
Organization And Conventions....................... 157
General Patterns In CVS Commands 157
Date Formats.......... ..., 158
Global Options, 158
add .o 163
admin e 163
annotate 167
checkout 167
(670 10411001 1 A 168
diff .. 169
edit ..o 171
edIbOrS . . oot 172
EXPOTE « e e 172
BSCTVET . o\ttt i et ettt et e 173
history ... 173
IMPOTt . e 175
0 177
KSeIVeT . .o 178
log . e 178
login ... 180
logout. ... 180
PSETVET . ottt et e et e e e e 180
rdiff . . 181
TElease . ..o 182
S 0101072 182
T . e 183
5150 10741 S 184
StatUS . . 184
1722 < 184
Unedit. ..o e e 185
UPdate 185
watCh . .. 187
watchers 187
Keyword Substitution (RCS Keywords) 188
Controlling Keyword Expansion...................... 188

List Of Keywords 189

vil

Repository Administrative Files............................. 190
Storage And Editing L. 190
Shared Syntaxo oo 190
Shared Variables.............o .. 191
User Variables i, 191
checkoutlist.......... 191
commitinfo........... 191
config ... 192
CVSIZNOTE . . o oottt et et e e 192
TPATA 210 1221 03 0 11 - 193
editinfo 193
history file. o 193
loginfo i 193
modules...... ... 194
Notify ..o 195
PASSWA . . ottt e 195
resinfo ... 195
taginfo. o 195
L0 ES S 196
Val-tags .o 196
verifymsg. 196

Run Control Files. i 196
VST C ettt e e 196
fLevsignore’ 197
VS PASS « ittt e 197
B =175 -] o1 o= L 197

Working Copy Files......... .. i 197
‘CVS/Base/’ (directory)............ooiiieiiiaan... 198
CVS/BasSereV’ ..ottt 198
‘CVS/Baserev.tmp’oviiririiinenneeeenanans 198
‘CVS/Checkin.prog’ ..o, 198
CVS/Entries’ . ..ot 198
‘CVS/Entries.Backup’covviiieininnn... 199
‘CVS/Entries.Logccvvviiiienenii 199
‘CVS/Entries.Static’........ ..., 199
CVS/NOtafy .. 199
‘CVS/Notify.tmp’o 199
‘CVS/Repository’ ..., 199
CVS/ROOTL ettt e 199
CVS/Tag oo et e e e e 200
‘CVS/Template’ottt et 200
‘CVS/Update.prog’........oouuiieiiiieeiiiaaann. 200

Environment Variables 200
SCOMSPECt 200
$CVS_CLIENT.LOG ... 200
$CVS_CLIENT . PORTcovviiiiie i 200
SCVSEDITOR. ... oot 200

SCVSIGNORE . ..o 200

viil Open Source Development With CVS

$CVS_IGNORE_REMOTE_ROOT 201
SCVS_PASSFILE 201
SCVS_.RCMD PORT ..ot 201
SCVSREAD e 201
SCVSROOT ... 201

SCVS_ RSH ... 201
SCVS_SERVERt 201
$CVS_SERVER_SLEEPt 201
SCVSUMASK ..o 202
SCVSWRAPPERS 202
SEDITOR . ..ot e 202
$HOME %HOMEDRIVE% %HOMEPATH% 202
SPATH . ..o 202
$TEMP $§TMP $TMPDIR...............cciiiannn... 202
SVISUAL ..o 202
Third-Party Tools........................... 203
pcl-cvs — An Emacs Interface To CVS 203
Installing pcl-cvs.......oooiii 203

Using pel-Cvs . ..o 205

Error Handling In pcl-cvs.............. 206

The Future Of pcl-cvs...... 206
cvsutils — General Utilities For Use With CVS................ 207
72 1 208

CVSAO .t e 208
CcvsChroot 209
CVSIMAAIN . . oottt e e 209

LA £5] 030 b - 209
cvsdiscardo 209

2o 209
cvsdate. 210

cvs2cl — Generate GNU-Style Changelogs 210
cvsq — Queue CVS Commands For Later Connection 212
cvslock — Lock Repositories For Atomicity 212
Other Packages 214
Writing Your Own Tools it 215
Indexcovvii ittt i 217

Appendix A GNU General Public License ... 219

Appendix B GNU Free Documentation License
....................................... 227

Introduction 3

Introduction

This is a set of free, online chapters about using CVS (Concurrent Versions System) for
collaboration and version control. It covers everything from CVS installation and basic
concepts all the way to advanced usage and administration. It is intended for anyone who
uses or plans to use CVS.

These chapters are excerpted from a larger work called Open Source Development With
CVS (published by The Coriolis Group (http://www.coriolis.com/), ISBN 1-57610-490-
7). The remainder of that book — chapters 1, 3, 5, and 7 — deals with the challenges and
philosophical issues of running an Open Source project using CVS.

While the free chapters here constitute a complete CVS book by them-
selves, we certainly hope you’ll like them enough to purchase a treeware
copy of the entire book! You can order it directly from the publisher, at
http://www.coriolis.com/bookstore/bookdetail.cfm?id=1576104907.

These chapters are released wunder the GNU General Public License
(http://www.gnu.org/copyleft/gpl.html). For more information about
free software in general, visit http://www.gnu.org/, and particularly
http://www.gnu.org/philosophy/free-sw.html.

To submit comments or errata regarding any of this material, please

send email to bug-cvsbook@red-bean.com. For news and wupdates, visit
http://cvsbook.red-bean.com/.

Open Source Development With CVS

An Overview of CVS 5

An Overview of CVS

I can’t imagine programming without it... that would be like parachuting without
a parachute!
—Brian Fitzpatrick on CVS

This chapter introduces the fundamentals of CVS, and then provides an in-depth guided
tour of everyday CVS usage. Concepts are presented sequentially, so if you're new to CVS,
the best way to read this is to start at the beginning and go straight through, without
skipping anything.

Basic Concepts

If you’ve never used CVS (or any version control system) before, it’s easy to get tripped
up by some of its underlying assumptions. What seems to cause the most initial confusion
about CVS is that it is used for two apparently unrelated purposes: record keeping and
collaboration. It turns out, however, that these two functions are closely connected.

Record keeping became necessary because people wanted to compare a program’s current
state with how it was at some point in the past. For example, in the normal course of
implementing a new feature, a developer may bring the program into a thoroughly broken
state, where it will probably remain until the feature is mostly finished. Unfortunately, this
is just the time when someone usually calls to report a bug in the last publicly released
version. To debug the problem (which may also exist in the current version of the sources),
the program has to be brought back to a useable state.

Restoring the state poses no difficulty if the source code history is kept under CVS. The
developer can simply say, in effect, "Give me the program as it was three weeks ago", or
perhaps "Give me the program as it was at the time of our last public release". If you've
never had this kind of convenient access to historical snapshots before, you may be surprised
at how quickly you come to depend on it. Personally, I always use revision control on my
coding projects now — it’s saved me many times.

To understand what this has to do with facilitating collaboration, we’ll need to take
a closer look at the mechanism that CVS provides to help numerous people work on the
same project. But before we do that, let’s take a look at a mechanism that CVS doesn’t
provide (or at least, doesn’t encourage): file locking. If you’ve used other version control
systems, you may be familiar with the lock-modify-unlock development model, wherein a
developer first obtains exclusive write access (a lock) to the file to be edited, makes the
changes, and then releases the lock to allow other developers access to the file. If someone
else already has a lock on the file, they have to "release" it before you can lock it and start
making changes (or, in some implementations, you may "steal" their lock, but that is often
an unpleasant surprise for them and not good practice!).

This system is workable if the developers know each other, know who’s planning to do
what at any given time, and can communicate with each other quickly if someone cannot
work because of access contention. However, if the developer group becomes too large or
too spread out, dealing with all the locking issues begins to chip away at coding time; it
becomes a constant hassle that can discourage people from getting real work done.

6 Open Source Development With CVS

CVS takes a more mellow approach. Rather than requiring that developers coordinate
with each other to avoid conflicts, CVS enables developers to edit simultaneously, assumes
the burden of integrating all the changes, and keeps track of any conflicts. This process
uses the copy-modify-merge model, which works as follows:

1. Developer A requests a working copy (a directory tree containing the files that make
up the project) from CVS. This is also known as "checking out" a working copy, like
checking a book out of the library.

2. Developer A edits freely in her working copy. At the same time, other developers may
be busy in their own working copies. Because these are all separate copies, there is
no interference — it is as though all of the developers have their own copy of the same
library book, and they’re all at work scribbling comments in the margins or rewriting
certain pages independently.

3. Developer A finishes her changes and commits them into CVS along with a "log mes-
sage", which is a comment explaining the nature and purpose of the changes. This is
like informing the library of what changes she made to the book and why. The library
then incorporates these changes into a "master" copy, where they are recorded for all
time.

4. Meanwhile, other developers can have CVS query the library to see if the master copy
has changed recently. If it has, CVS automatically updates their working copies. (This
part is magical and wonderful, and I hope you appreciate it. Imagine how different the
world would be if real books worked this way!)

As far as CVS is concerned, all developers on a project are equal. Deciding when to
update or when to commit is largely a matter of personal preference or project policy. One
common strategy for coding projects is to always update before commencing work on a
major change and to commit only when the changes are complete and tested so that the
master copy is always in a "runnable" state.

Perhaps you’re wondering what happens when developers A and B, each in their own
working copy, make different changes to the same area of text and then both commit their
changes? This is called a conflict, and CVS notices it as soon as developer B tries to
commit changes. Instead of allowing developer B to proceed, CVS announces that it has
discovered a conflict and places conflict markers (easily recognizable textual flags) at the
conflicting location in his copy. That location also shows both sets of changes, arranged
for easy comparison. Developer B must sort it all out and commit a new revision with the
conflict resolved. Perhaps the two developers will need to talk to each other to settle the
issue. CVS only alerts the developers that there is a conflict; it’s up to human beings to
actually resolve it.

What about the master copy? In official CVS terminology, it is called the project’s
repository. The repository is simply a file tree kept on a central server. Without going into
too much detail about its structure (but see [Repository Administration], page 63), let’s look
at what the repository must do to meet the requirements of the checkout-commit-update
cycle. Consider the following scenario:

1. Two developers, A and B, check out working copies of a project at the same time. The
project is at its starting point — no changes have been committed by anyone yet, so all
the files are in their original, pristine state.

2. Developer A gets right to work and soon commits her first batch of changes.

An Overview of CVS 7

3. Meanwhile, developer B watches television.

4. Developer A, hacking away like there’s no tomorrow, commits her second batch of
changes. Now, the repository’s history contains the original files, followed by A’s first
batch of changes, followed by this set of changes.

5. Meanwhile, developer B plays video games.

6. Suddenly, developer C joins the project and checks out a working copy from the repos-

itory. Developer C’s copy reflects A’s first two sets of changes, because they were
already in the repository when C checked out her copy.

7. Developer A, continuing to code as one possessed by spirits, completes and commits
her third batch of changes.

8. Finally, blissfully unaware of the recent frenzy of activity, developer B decides it’s time
to start work. He doesn’t bother to update his copy; he just commences editing files,
some of which may be files that A has worked in. Shortly thereafter, developer B
commits his first changes.

At this point, one of two things can happen. If none of the files edited by developer B
have been edited by A, the commit succeeds. However, if CVS realizes that some of B’s
files are out of date with respect to the repository’s latest copies, and those files have also
been changed by B in his working copy, CVS informs B that he must do an update before
committing those files.

When developer B runs the update, CVS merges all of A’s changes into B’s local copies
of the files. Some of A’s work may conflict with B’s uncommitted changes, and some may
not. Those parts that don’t are simply applied to B’s copies without further complication,
but the conflicting changes must be resolved by B before being committed.

If developer C does an update now, she’ll receive various new changes from the repository:
those from A’s third commit, and those from B’s first successful commit (which might really
come from B’s second attempt to commit, assuming B’s first attempt resulted in B being
forced to resolve conflicts).

In order for CVS to serve up changes, in the correct sequence, to developers whose
working copies may be out of sync by varying degrees, the repository needs to store all
commits since the project’s beginning. In practice, the CVS repository stores them all
as successive diffs. Thus, even for a very old working copy, CVS is able to calculate the
difference between the working copy’s files and the current state of the repository, and
is thereby able to bring the working copy up to date efficiently. This makes it easy for
developers to view the project’s history at any point and to revive even very old working
copies.

Although, strictly speaking, the repository could achieve the same results by other
means, in practice, storing diffs is a simple, intuitive means of implementing the neces-
sary functionality. The process has the added benefit that, by using patch appropriately,
CVS can reconstruct any previous state of the file tree and thus bring any working copy
from one state to another. It can allow someone to check out the project as it looked at
any particular time. It can also show the differences, in diff format, between two states of
the tree without affecting someone’s working copy.

Thus, the very features necessary to give convenient access to a project’s history are
also useful for providing a decentralized, uncoordinated developer team with the ability to
collaborate on the project.

8 Open Source Development With CVS

For now, you can ignore the details of setting up a repository, administering user access,
and navigating CVS-specific file formats (those will be covered in [Repository Administra-
tion], page 63). For the moment, we’ll concentrate on how to make changes in a working
copy.

But first, here is a quick review of terms:

e Revision A committed change in the history of a file or set of files. A revision is one
"snapshot" in a constantly changing project.

e Repository The master copy where CVS stores a project’s full revision history. Each
project has exactly one repository.

e Working copy The copy in which you actually make changes to a project. There can
be many working copies of a given project; generally each developer has his or her own
copy.

e Check out To request a working copy from the repository. Your working copy reflects
the state of the project as of the moment you checked it out; when you and other
developers make changes, you must use commit and update to "publish" your changes
and view others’ changes.

e Commit To send changes from your working copy into the central repository. Also
known as check-in.

e Log message A comment you attach to a revision when you commit it, describing the
changes. Others can page through the log messages to get a summary of what’s been
going on in a project.

e Update To bring others’ changes from the repository into your working copy and to
show if your working copy has any uncommitted changes. Be careful not to confuse
this with commit; they are complementary operations. Mnemonic: update brings your
working copy up to date with the repository copy.

e Conflict The situation when two developers try to commit changes to the same region
of the same file. CVS notices and points out conflicts, but the developers must resolve
them.

A Day With CVS

This section describes some basic CVS operations, then follows with a sample session cov-
ering typical CVS usage. As the guided tour progresses, we’ll also start to look at how CVS
works internally.

Although you don’t need to understand every last detail of CVS’s implementation to use
it, a basic knowledge of how it works is invaluable in choosing the best way to achieve a given
result. CVS is more like a bicycle than an automobile, in the sense that its mechanisms
are entirely transparent to anyone who cares to look. As with a bicycle, you can just hop
on and start riding immediately. However, if you take a few moments to study how the
gears work, you’ll be able to ride it much more efficiently. (In the case of CVS, I’'m not sure
whether transparency was a deliberate design decision or an accident, but it does seem to
be a property shared by many free programs. Externally visible implementations have the
advantage of encouraging the users to become contributing developers by exposing them to
the system’s inner workings right from the start.)

An Overview of CVS 9

Conventions Used In This Tour

The tour takes place in a Unix environment. CVS also runs on Windows and Macintosh
operating systems, and Tim Endres of Ice Engineering has even written a Java client (see
http://www.trustice.com/java/jcvs/), which can be run anywhere Java runs. However,
I’'m going to take a wild guess and assume that the majority of CVS users — present and
potential — are most likely working in a Unix command-line environment. If you aren’t one
of these, the examples in the tour should be easy to translate to other interfaces. Once you
understand the concepts, you can sit down at any CVS front end and work with it (trust
me, I’ve done it many times).

The examples in the tour are oriented toward people who will be using CVS to keep track
of programming projects. However, CVS operations are applicable to all text documents,
not just source code.

The tour also assumes that you already have CVS installed (it’s present by default on
many of the popular free Unix systems, so you might already have it without knowing it)
and that you have access to a repository. Even if you are not set up, you can still benefit
from reading the tour. In [Repository Administration], page 63, you’ll learn how to install
CVS and set up repositories.

Assuming CVS is installed, you should take a moment to find the online CVS man-
ual. Known familiarly as the "Cederqvist" (after Per Cederqvist, its original author), it
comes with the CVS source distribution and is usually the most up-to-date reference avail-
able. It’s written in Texinfo format and should be available on Unix systems in the "Info"
documentation hierarchy. You can read it either with the command line info program

floss$ info cvs

or by pressing Ctrl+H and then typing "i" inside Emacs. If neither of these works for
you, consult your local Unix guru (or see [Repository Administration], page 63 regarding
installation issues). You’ll definitely want to have the Cederqvist at your fingertips if you’re
going to be using CVS regularly.

Invoking CVS

CVS is one program, but it can perform many different actions: updating, committing,
branching, diffing, and so on. When you invoke CVS, you must specify which action you
want to perform. Thus, the format of a CVS invocation is:

floss$ cvs command

For example, you can use

floss$ cvs update

floss$ cvs diff

floss$ cvs commit

and so on. (Don’t bother to try running any of those particular commands yet, though;
they won’t do anything until you’re in a working copy, which we’ll get to shortly.)

Both CVS and the command can take options. Options that affect the behavior of
CVS, independently of the command being run, are called global options; command-specific
options are just called command options. Global options always go to the left of the
command; command options, to its right. So in

Open Source Development With CVS

floss$ cvs -Q update -p
-Q is a global option, and -p is a command option. (If you’re curious, -Q means "quietly"-
that is, suppress all diagnostic output, and print error messages only if the command ab-
solutely cannot be completed for some reason; -p means to send the results of update to
standard output instead of to files.)

Accessing A Repository

Before you can do anything, you must tell CVS the location of the repository you’ll be
accessing. This isn’t a concern if you already have a working copy checked out — any
working copy knows what repository it came from, so CVS can automatically deduce the
repository for a given working copy. However, let’s assume you don’t have a working copy
yet, so you need to tell CVS explicitly where to go. This is done with the -d global option
(the -d stands for "directory", an abbreviation for which there is a historical justification,
although -r for "repository" might have been better), followed by the path to the repository.
For example, assuming the repository is on the local machine in /usr/local/cvs (a fairly
standard location):

floss$ cvs -d /usr/local/cvs command

In many cases, however, the repository is on another machine and must therefore be
reached over the network. CVS provides a choice of network access methods; which one
you’ll use depends mostly on the security needs of the repository machine (hereinafter
referred to as "the server"). Setting up the server to allow various remote access methods
is covered in [Repository Administration], page 63; here we’ll deal only with the client side.

Fortunately, all the remote access methods share a common invocation syntax. In gen-
eral, to specify a remote repository as opposed to a local one, you just use a longer repository
path. You first name the access method, delimited on each side by colons, followed by the
username and the server name (joined with an @ sign), another separator colon, and finally
the path to the repository directory on the server.

Let’s look at the pserver access method, which stands for "password-authenticated
server':

floss$ cvs -d :pserver:jrandom@cvs.foobar.com:/usr/local/cvs login
(Logging in to jrandom@cvs.foobar.com)

CVS password: (enter your CVS password here)

floss$

The long repository path following -d told CVS to use the pserver access method,
with the username jrandom, on the server cvs.foobar.com, which has a CVS repository
in /usr/local/cvs. There’s no requirement that the hostname be "cvs.something.com" by
the way; that’s a common convention, but it could just as easily have been:

floss$ cvs -d :pserver:jrandom@fish.foobar.org:/usr/local/cvs command

The command actually run was login, which verifies that you are authorized to work with
this repository. It prompts for a password, then contacts the server to verify the password.
Following Unix custom, cvs login returns silently if the login succeeds; it shows an error
message if it fails (for instance, because the password is incorrect).

You only have to log in once from your local machine to a given CVS server. After a
successful login, CVS stores the password in your home directory, in a file called .cvspass.

An Overview of CVS

It consults that file every time a repository is contacted via the pserver method, so you
only have to run login the first time you access a given CVS server from a particular client
machine. Of course, you can rerun cvs login anytime if the password changes.

Note: pserver is currently the only access method requiring an initial login like this; with
the others, you can start running regular CVS commands immediately.

Once you’ve stored the authentication information in your .cvspass file, you can run
other CVS commands using the same command-line syntax:

floss$ cvs -d :pserver:jrandom@cvs.foobar.com:/usr/local/cvs command

Getting pserver to work in Windows may require an extra step. Windows doesn’t have
the Unix concept of a home directory, so CVS doesn’t know where to put the .cvspass file.
You’ll have to specify a location. It’s normal to designate the root of the C: drive as the
home directory:

C:\WINDOWS> set HOME=C:

C:\WINDOWS> cvs -d :pserver:jrandom@cvs.foobar.com:/usr/local/cvs login
(Logging in to jrandom@cvs.foobar.com)

CVS password: (enter password here)

C:\WINDOWS>

Any folder in the file system will suffice. You may want to avoid network drives, though,
because the contents of your .cvspass file would then be visible to anyone with access to the
drive.

In addition to pserver, CVS supports the ext method (which uses an external connec-
tion program, such as rsh or ssh), kserver (for the Kerberos security system version 4),
and gserver (which uses the GSSAPI, or Generic Security Services API, and also handles
Kerberos versions 5 and higher). These methods are similar to pserver, but each has its
own idiosyncrasies.

Of these, the ext method is probably the most commonly used. If you can log into the
server with rsh or ssh, you can use the ext method. You can test it like this:

floss$ rsh -1 jrandom cvs.foobar.com
Password: enter your login password here
Okay, let’s assume you successfully logged in and logged out of the server with rsh, so
now you’re back on the original client machine:
floss$ CVS_RSH=rsh; export CVS_RSH
floss$ cvs -d :ext:jrandom@cvs.foobar.com:/usr/local/cvs command

The first line sets (in Unix Bourne shell syntax) the CVS_RSH environment variable to
rsh, which tells CVS to use the rsh program to connect. The second line can be any CVS
command; you will be prompted for your password so CVS can log into the server.

If you’re in C shell rather than in Bourne shell, try this:
floss) setenv CVS_RSH rsh

and for Windows, try this:
C:\WINDOWS> set CVS_RSH=rsh

The rest of the tour will use the Bourne syntax; translate for your environment as
necessary.

To use ssh (the Secure Shell) instead of rsh, just set the CVS_RSH variable appropriately:

Open Source Development With CVS

floss$ CVS_RSH=ssh; export CVS_RSH

Don’t get thrown by the fact that the variable’s name is CVS_RSH but you're setting
its value to ssh. There are historical reasons for this (the catch-all Unix excuse, I know).
CVS_RSH can point to the name of any program capable of logging you into the remote
server, running commands, and receiving their output. After rsh, ssh is probably the most
common such program, although there are probably others. Note that this program must
not modify its data stream in any way. This disqualifies the Windows NT rsh, because
it converts (or attempts to convert) between the DOS and Unix line-ending conventions.
You’d have to get some other rsh for Windows or use a different access method.

The gserver and kserver methods are not used as often as the others and are not covered
here. They’re quite similar to what we’ve covered so far; see the Cederqvist for details.

If you only use one repository and don’t want to type -d repos each time, just set the
CVSROOT environment variable (which perhaps should have been named CVSREPOS,
but it’s too late to change that now):

floss$ CVSROOT=/usr/local/cvs
floss$ export CVSROOT

floss$ echo $CVSROOT
/usr/local/cvs

floss$

or maybe

floss$ CVSROOT=:pserver:jrandom@cvs.foobar.com:/usr/local/cvs
floss$ export CVSROOT

floss$ echo $CVSROOT

:pserver: jrandom@cvs.foobar.com: /usr/local/cvs

floss$

The rest of this tour assumes that you've set CVSROOT to point to your repository, so
the examples will not show the -d option. If you need to access many different repositories,
you should not set CVSROOT and should just use -d repos when you need to specify the
repository.

Starting A New Project

If you're learning CVS in order to work on a project that’s already under CVS control (that
is, it is kept in a repository somewhere), you’ll probably want to skip down to the next
section, "Checking Out A Working Copy." On the other hand, if you want to take existing
source code and put it into CVS, this is the section for you. Note that it still assumes you
have access to an existing repository; see [Repository Administration], page 63 if you need
to set up a repository first.

Putting a new project into a CVS repository is known as importing. The CVS command,
as you may have guessed, is

floss$ cvs import

except that it needs some more options (and needs to be in the right location) to succeed.
First, go into the top-level directory of your project tree:

An Overview of CVS

floss$ cd myproj

floss$ 1s

README.txt a-subdir/ Db-subdir/ Thello.c
floss$

This project has two files - README.txt and hello.c — in the top level, plus two subdi-
rectories — a-subdir and b-subdir — plus some more files (not shown in the example) inside
those subdirectories. When you import a project, CVS imports everything in the tree,
starting from the current directory and working its way down. Therefore, you should make
sure that the only files in the tree are ones you want to be permanent parts of the project.
Any old backup files, scratch files, and so on should all be cleaned out.

The general syntax of an import command is
floss$ cvs import -m "log msg" projname vendortag releasetag

The -m flag (for message) is for specifying a short message describing the import. This
will be the first log message for the entire project; every commit thereafter will also have
its own log message. These messages are mandatory; if you don’t give the -m flag, CVS
automatically starts up an editor (by consulting the EDITOR environment variable) for
you to type a log message in. After you save the log message and exit the editor, the import
then continues.

The next argument is the project’s name (we’ll use "myproj"). This is the name under
which you’ll check out the project from the repository. (What actually happens is that
a directory of that name gets created in the repository, but more on that in [Repository
Administration], page 63.) The name you choose now does not need to be the same as the
name of the current directory, although in most cases it usually is.

The vendortag and releasetag arguments are a bit of bookkeeping for CVS. Don’t worry
about them now; it hardly matters what you use. In [Advanced CVS], page 97 you'll learn
about the rare circumstances where they’re significant. For now, we’ll use a username and
"start" for those arguments.

We're ready to run import:

floss$ cvs import -m "initial import into CVS" myproj jrandom start
N myproj/hello.c

N myproj/README.txt

cvs import: Importing /usr/local/cvs/myproj/a-subdir

N myproj/a-subdir/whatever.c

cvs import: Importing /usr/local/cvs/myproj/a-subdir/subsubdir

N myproj/a-subdir/subsubdir/fish.c

cvs import: Importing /usr/local/cvs/myproj/b-subdir

N myproj/b-subdir/random.c

No conflicts created by this import
floss$

Congratulations! If you ran that command (or something similar), you’ve finally done
something that affects the repository.

Reading over the output of the import command, you’ll notice that CVS precedes each
filename with a single letter — in this case, "N" for "new file". The use of a single letter on

Open Source Development With CVS

the left to indicate the status of a file is a general pattern in CVS command output. We’ll
see it later in checkout and update as well.

You might think that, having just imported the project, you can start working in the tree
immediately. This is not the case, however. The current directory tree is still not a CVS
working copy. It was the source for the import command, true, but it wasn’t magically
changed into a CVS working copy merely by virtue of having been imported. To get a
working copy, you need to check one out from the repository.

First, though, you might want to archive the current project tree. The reason is that once
the sources are in CVS, you don’t want to confuse yourself by accidentally editing copies
that aren’t in version control (because those changes won’t become part of the project’s
history). You want to do all of your editing in a working copy from now on. However, you
also don’t want to remove the imported tree entirely, because you haven’t yet verified that
the repository actually has the files. Of course, you can be 99.999 percent certain that it
does because the import command returned with no error, but why take chances? Paranoia
pays, as every programmer knows. Therefore, do something like this:

floss$ 1s

README.txt a-subdir/ b-subdir/ hello.c
floss$ cd ..

floss$ 1s

myproj/

floss$ mv myproj was_myproj

floss$ 1s

was_myproj/

floss$

There. You still have the original files, but they’re clearly named as an obsolete version,
so they won’t be in the way when you get a real working copy. Now you’re ready to check
out.

Checking Out A Working Copy

The command to check out a project is exactly what you think it is:

floss$ cvs checkout myproj

cvs checkout: Updating myproj

U myproj/README.txt

U myproj/hello.c

cvs checkout: Updating myproj/a-subdir

U myproj/a-subdir/whatever.c

cvs checkout: Updating myproj/a-subdir/subsubdir
U myproj/a-subdir/subsubdir/fish.c

cvs checkout: Updating myproj/b-subdir

U myproj/b-subdir/random.c

floss$ 1s
myproj/ was_myproj/
floss$ cd myproj

An Overview of CVS

floss$ 1s
cvs/ README.txt a-subdir/ b-subdir/ hello.c
floss$

Behold — your first working copy! Its contents are exactly the same as what you imported,
with the addition of a subdirectory named "CVS". That’s where CVS stores version control
information. Actually, each directory in the project has a CVS subdirectory:

floss$ 1ls a-subdir

cvs/ subsubdir/ whatever.c
floss$ 1s a-subdir/subsubdir/

Ccvs/ fish.c

floss$ 1ls b-subdir

cvs/ random.c

The fact that CVS keeps its revision information in subdirectories named CVS means
that your project can never contain subdirectories of its own named CVS. In practice, I've
never heard of this being a problem.

Before editing any files, let’s take a peek inside the black box:
floss$ cd CVS

floss$ 1s

Entries Repository Root
floss$ cat Root
/usr/local/cvs

floss$ cat Repository

myproj

floss$

Nothing too mysterious there. The Root file points to repository, and the Repository
file points to a project inside the repository. If that’s a little confusing, let me explain.

There is a longstanding confusion about terminology in CVS. The word "repository" is
used to refer to two different things. Sometimes, it means the root directory of a repos-
itory (for example, /usr/local/cvs), which can contain many projects; this is what the
Root file refers to. But other times, it means one particular project-specific subdirectory
within a repository root (for example, /usr/local/cvs/myproj, /usr/local/cvs/yourproj, or
Jusr/local/cvs/fish). The Repository file inside a CVS subdirectory takes the latter mean-
ing.

In this book, "repository" generally means Root (that is, the top-level repository), al-
though it may occasionally be used to mean a project-specific subdirectory. If the intended
sense can’t be figured out from the context, there will be clarifying text. Note that the
Repository file may sometimes contain an absolute path to the project name instead of a
relative path. This can make it slightly redundant with the Root file:

floss$ cd CVS

floss$ cat Root

:pserver: jrandom@cvs.foobar.com: /usr/local/cvs
floss$ cat Repository

/usr/local/cvs/myproj

floss$

Open Source Development With CVS

The Entries file stores information about the individual files in the project. Each line
deals with one file, and there are only lines for files or subdirectories in the immediate parent
directory. Here’s the top-level CVS/Entries file in myproj:

floss$ cat Entries

/README.txt/1.1.1.1/Sun Apr 18 18:18:22 1999//
/hello.c/1.1.1.1/Sun Apr 18 18:18:22 1999//
D/a-subdir////

D/b-subdir////

The format of each line is
/filename/revision number/last modification date//

and the directory lines are prefixed with "D". (CVS doesn’t really keep a change history
for directories, so the fields for revision number and datestamp are empty.)

The datestamps record the date and time of the last update (in Universal Time, not
local time) of the files in the working copy. That way, CVS can easily tell whether a file
has been modified since the last checkout, update, or commit. If the file system timestamp
differs from the timestamp in the CVS/Entries file, CVS knows (without even having to
consult the repository) that the file was probably modified.

If you take a look at the CVS/* files in one of the subdirectories

floss$ cd a-subdir/CVS

floss$ cat Root

/usr/local/cvs

floss$ cat Repository

myproj/a-subdir

floss$ cat Entries

/whatever.c/1.1.1.1/Sun Apr 18 18:18:22 1999//
D/subsubdir////

floss$

you can see that the root repository has not changed, but the Repository file spells out
the location of this subdirectory of the project, and the Entries file contains different lines.

Immediately after import, the revision number of every file in the project is shown as
1.1.1.1. This initial revision number is a bit of a special case, so we won’t examine it in
detail just yet; we’ll take a closer look at revision numbers after we've committed some
changes.

Version Versus Revision

The internal revision number that CVS keeps for each file is unrelated to the version number
of the software product of which the files are part. For example, you may have a project
composed of three files, whose internal revision numbers on May 3, 1999, were 1.2, 1.7, and
2.48. On that day, you package up a new release of the software and release it as SlickoSoft
Version 3. This is purely a marketing decision and doesn’t affect the CVS revisions at all.
The CVS revision numbers are invisible to your customers (unless you give them repository
access); the only publicly visible number is the "3" in Version 3. You could have called it
Version 1729 as far as CVS is concerned — the version number (or "release" number) has
nothing to do with CVS’s internal change tracking.

An Overview of CVS

To avoid confusion, I’ll use the word "revision" to refer exclusively to the internal revision
numbers of files under CVS control. I may still call CVS a "version control system", however,
because "revision control system" just sounds too awkward.

Making A Change

The project as it stands doesn’t do much. Here are the contents of hello.c:

floss$ cat hello.c
#include <stdio.h>

void
main ()
{
printf ("Hello, world!\n");
}

Let’s make the first change to the project since importing it; we’ll add the line
printf ("Goodbye, world!\n");

right after the Hello, world!. Invoke your favorite editor and make the change:
floss$ emacs hello.c

This was a fairly simple change, one where you’re not likely to forget what you did. But
in a larger, more complex project, it’s quite possible you may edit a file, be interrupted by
something else, and return several days later and be unable to remember exactly what you
did, or even to remember if you changed anything at all. Which brings us to our first "CVS
Saves Your Life" situation: comparing your working copy against the repository.

Finding Out What You (And Others) Did — update And diff

Previously, I've talked about updating as a way of bringing changes down from the reposi-
tory into your working copy — that is, as a way of getting other people’s changes. However,
update is really a bit more complex; it compares the overall state of the working copy with
the state of the project in the repository. Even if nothing in the repository has changed
since checkout, something in the working copy may have, and update will show that, too:

floss$ cvs update

cvs update: Updating .

M hello.c

cvs update: Updating a-subdir

cvs update: Updating a-subdir/subsubdir

cvs update: Updating b-subdir

The M next to hello.c means the file has been modified since it was last checked out,

and the modifications have not yet been committed to the repository.

Sometimes, merely knowing which files you've edited is all you need. However, if you
want a more detailed look at the changes, you can get a full report in diff format. The diff
command compares the possibly modified files in the working copy to their counterparts in
the repository and displays any differences:

Open Source Development With CVS

floss$ cvs diff
cvs diff: Diffing .
Index: hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v

retrieving revision 1.1.1.1

diff -r1.1.1.1 hello.c

6a7

> printf ("Goodbye, world!\n");

cvs diff: Diffing a-subdir

cvs diff: Diffing a-subdir/subsubdir

cvs diff: Diffing b-subdir

That’s helpful, if a bit obscure, but there’s still a lot of cruft in the output. For starters,

you can ignore most of the first few lines. They just name the repository file and give the
number of the last checked-in revision. These are useful pieces of information under other
circumstances (we’ll look more closely at them later), but you don’t need them when you’re
just trying to get a sense of what changes have been made in the working copy.

A more serious impediment to reading the diff is that CVS is announcing its entry as
it goes into each directory during the update. This can be useful during long updates on
large projects, as it gives you a sense of how much longer the command will take, but right
now it’s just getting in the way of reading the diff. Let’s tell CVS to be quiet about where
it’s working, with the -Q global option:

floss$ cvs -Q diff
Index: hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.1.1.1

diff -r1.1.1.1 hello.c

6a7

> printf ("Goodbye, world!\n");

Better — at least some of the cruft is gone. However, the diff is still hard to read. It’s
telling you that at line 6, a new line was added (that is, what became line 7), whose contents
were:

printf ("Goodbye, world!\n");

The preceding ">" in the diff tells you that this line is present in the newer version of
the file but not in the older one.

The format could be made even more readable, however. Most people find "context" diff
format easier to read because it displays a few lines of context on either side of a change.
Context diffs are generated by passing the -c flag to diff:

floss$ cvs -Q diff -c
Index: hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.1.1.1
diff -c -r1.1.1.1 hello.c

An Overview of CVS

*%% hello.c 1999/04/18 18:18:22 1.1.1.1
--- hello.c 1999/04/19 02:17:07

ek ke ke ke ok ok ok ok ok ok ok ok o ok

kkk 4T sdkokkok

printf ("Hello, world!\n");
+ printf ("Goodbye, world!\n");
}

Now that’s clarity! Even if you're not used to reading context diffs, a glance at the
preceding output will probably make it obvious what happened: a new line was added (the
+ in the first column signifies an added line) between the line that prints Hello, world! and
the final curly brace.

We don’t need to be able to read context diffs perfectly (that’s patch’s job), but it’s
worth taking the time to acquire at least a passing familiarity with the format. The first
two lines (after the introductory cruft) are

*** hello.c 1999/04/18 18:18:22 1.1.1.1
--- hello.c 1999/04/19 02:17:07

and they tell you what is being diffed against what. In this case, revision 1.1.1.1 of
hello.c is being compared against a modified version of the same file (thus, there’s no
revision number for the second line, because only the working copy’s changes haven’t been
committed to the repository yet). The lines of asterisks and dashes identify sections farther
down in the diff. Later on, a line of asterisks, with a line number range embedded, precedes
a section from the original file. Then a line of dashes, with a new and potentially different
line number range embedded, precedes a section from the modified file. These sections are
organized into contrasting pairs (known as "hunks"), one side from the old file and the
other side from the new.

Our diff has one hunk:

stk ke ok ok ok ok Kk ok ok ok ok ok
kkk 4,7 kkkk

printf ("Hello, world!\n");
+ printf ("Goodbye, world!\n");
}

The first section of the hunk is empty, meaning that no material was removed from the
original file. The second section shows that, in the corresponding place in the new file,
one line has been added; it’s marked with a "+". (When diff quotes excerpts from files, it
reserves the first two columns on the left for special codes, such as "+" so the entire excerpt
appears to be indented by two spaces. This extra indentation is stripped off when the diff
is applied, of course.)

The line number ranges show the hunk’s coverage, including context lines. In the original
file, the hunk was in lines 4 through 7; in the new file, it’s lines 4 through 8 (because a line

Open Source Development With CVS

has been added). Note that the diff didn’t need to show any material from the original file
because nothing was removed; it just showed the range and moved on to the second half of
the hunk.

Here’s another context diff, from an actual project of mine:

floss$ cvs -Q diff -c
Index: cvs2cl.pl

RCS file: /usr/local/cvs/kfogel/code/cvs2cl/cvs2cl.pl,v
retrieving revision 1.76
diff -c¢ -r1.76 cvs2cl.pl

**x*x cvs2cl.pl 1999/04/13 22:29:44 1.76
-—— cvs2cl.pl 1999/04/19 05:41:37
sk ok ok ok ok o ok ok

*kx 212,218 *xkkk
can contain uppercase and lowercase letters, digits, ’-’,
and ’_’. However, it’s not our place to enforce that, so
we’ll allow anything CVS hands us to be a tag:
! /" \s([":1+): ([0-9.1+)8$/;
push (@{$symbolic_names{$2}}, $1);
}
}
-- 212,218 --
can contain uppercase and lowercase letters, digits, ’-’,
and ’_’. However, it’s not our place to enforce that, so
we’ll allow anything CVS hands us to be a tag:
! /°\s([":1+): ([\d.1+)$/;
push (@{$symbolic_names{$2}}, $1);

}
}
The exclamation point shows that the marked line differs between the old and new files.
Since there are no "+" or "-" signs, we know that the total number of lines in the file has

remained the same.
Here’s one more context diff from the same project, slightly more complex this time:

floss$ cvs -Q diff -c
Index: cvs2cl.pl

RCS file: /usr/local/cvs/kfogel/code/cvs2cl/cvs2cl.pl,v
retrieving revision 1.76
diff -c¢ -r1.76 cvs2cl.pl

**k*x cvs2cl.pl 1999/04/13 22:29:44 1.76
-—- cvs2cl.pl 1999/04/19 05:58:51
ko ok koK ok o ok ok o o ok
*kik 207,217 skkk
}
else # we’re looking at a tag name, so parse & store it

{

An Overview of CVS

According to the Cederqvist manual, in node "Tags", "Tag
names must start with an uppercase or lowercase letter and
can contain uppercase and lowercase letters, digits, ’-7,
and ’_’. However, it’s not our place to enforce that, so
- # we’ll allow anything CVS hands us to be a tag:
/"\s([":1+): ([0-9.14)8/;
push (@{$symbolic_names{$2}}, $1);

H OH H

}
- 207,212 —-
Feok ke ok ok ok ok ke ko ok ok ok ok ok
*xkk 223,228 *kkxk
-—- 218,225 --
if (/"revision (\d\.[0-9.1+)$/) {
$revision = "$1";
}
+
+ # This line was added, I admit, solely for the sake of a diff example.

If have file name but not time and author, and see date or
author, then grab them:

This diff has two hunks. In the first, five lines were removed (these lines are only shown
in the first section of the hunk, and the second section’s line count shows that it has five
fewer lines). An unbroken line of asterisks forms the boundary between hunks, and in the
second hunk we see that two lines have been added: a blank line and a pointless comment.
Note how the line numbers compensate for the effect of the previous hunk. In the original
file, the second hunk’s range of the area was lines 223 through 228; in the new file, because
of the deletion that took place in the first hunk, the range is in lines 218 through 225.

Congratulations, you are probably now as expert as you’ll ever need to be at reading
diffs.

CVS And Implied Arguments

In each of the CVS commands so far, you may have noticed that no files were specified on
the command line. We ran

floss$ cvs diff
instead of

floss$ cvs diff hello.c
and

floss$ cvs update
instead of

floss$ cvs update hello.c

The principle at work here is that if you don’t name any files, CVS acts on all files for
which the command could possibly be appropriate. This even includes files in subdirecto-
ries beneath the current directory; CVS automatically descends from the current directory

Open Source Development With CVS

through every subdirectory in the tree. For example, if you modified b-subdir/random.c
and a-subdir/subsubdir/fish.c, running update may result in this:

or

floss$ cvs update

cvs update: Updating .

M hello.c

cvs update: Updating a-subdir
cvs update: Updating a-subdir/subsubdir
M a-subdir/subsubdir/fish.c
cvs update: Updating b-subdir
M b-subdir/random.c

floss$

better yet:

floss$ cvs —-q update

M hello.c

M a-subdir/subsubdir/fish.c

M b-subdir/random.c
floss$

Note: The -q flag is a less emphatic version of -Q. Had we used -Q, the command would
have printed out nothing at all, because the modification notices are considered nonessential
informational messages. Using the lowercase -q is less strict; it suppresses the messages we
probably don’t want, while allowing certain, more useful messages to pass through.

You can also name specific files for the update:

floss$ cvs update hello.c b-subdir/random.c
M hello.c

M b-subdir/random.c

floss$

and CVS will only examine those files, ignoring all others.

In truth, it’s more common to run update without restricting it to certain files. In most
situations, you’ll want to update the entire directory tree at once. Remember, the updates

we're

doing here only show that some files have been locally modified, because nothing has

changed yet in the repository. When other people are working on the project with you,
there’s always the chance that running update will pull some new changes down from the
repository and incorporate them into your local files. In that case, you may find it slightly
more useful to name which files you want updated.

The same principle can be applied to other CVS commands. For example, with diff, you
can choose to view the changes one file at a time

floss$ cvs diff -c b-subdir/random.c
Index: b-subdir/random.c

RCS file: /usr/local/cvs/myproj/b-subdir/random.c,v
retrieving revision 1.1.1.1

diff -c¢ -r1.1.1.1 random.c

*** b-subdir/random.c 1999/04/18 18:18:22 1.1.1.1
--- b-subdir/random.c 1999/04/19 06:09:48

sk ok ok o ok ook o ko Ko

An Overview of CVS

Kok 1 kokkok
! /x A completely empty C file. */
—_— 1’8 —_
/* Print out a random number. */

#include <stdio.h>

void main ()
{

printf ("a random number\n");

}

or see all the changes at once (hang on to your seat, this is going to be a big diff):

floss$ cvs -Q diff —c
Index: hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.1.1.1

diff -c¢ -r1.1.1.1 hello.c

x hello.c 1999/04/18 18:18:22 1.1.1.1

--- hello.c 1999/04/19 02:17:07
ok ok ok ok ok o ok ok

kkk 4T sokskok

printf ("Hello, world!\n");
+ printf ("Goodbye, world!\n");
}

Index: a-subdir/subsubdir/fish.c

RCS file: /usr/local/cvs/myproj/a-subdir/subsubdir/fish.c,v
retrieving revision 1.1.1.1
diff -¢ -r1.1.1.1 fish.c

*** g-subdir/subsubdir/fish.c 1999/04/18 18:18:22 1.1.1.1
--— a-subdir/subsubdir/fish.c 1999/04/19 06:08:50
sk ke ok ke ok ok ok ok ok ok ok ok ok o ok

*okk 1 Aok

! /¥ A completely empty C file. */
—_— 1’8 —_

! #include <stdio.h>

!

!

! void main ()

' {

' while (1) {

! printf ("fish\n");
'}

Open Source Development With CVS

.

Index: b-subdir/random.c

RCS file: /usr/local/cvs/myproj/b-subdir/random.c,v
retrieving revision 1.1.1.1
diff -¢ -r1.1.1.1 random.c

*** b-subdir/random.c 1999/04/18 18:18:22 1.1.1.1
--— b-subdir/random.c 1999/04/19 06:09:48
sk ke ke o o sk sk sk ok ok e s ok sk ok

Kkk 1 kokokok
! /*x A completely empty C file. */
—_ 1’8 —_
/* Print out a random number. */

#include <stdio.h>

void main ()
{

printf ("a random number\n");
}

Anyway, as you can see from these diffs, this project is clearly ready for prime time.
Let’s commit the changes to the repository.

Committing

The commit command sends modifications to the repository. If you don’t name any files,
a commit will send all changes to the repository; otherwise, you can pass the names of one
or more files to be committed (other files would be ignored, in that case).

Here, we commit one file by name and two by inference:

floss$ cvs commit -m "print goodbye too" hello.c
Checking in hello.c;

/usr/local/cvs/myproj/hello.c,v <-— hello.c

new revision: 1.2; previous revision: 1.1

done

floss$ cvs commit -m "filled out C code"

cvs commit: Examining .

cvs commit: Examining a-subdir

cvs commit: Examining a-subdir/subsubdir

cvs commit: Examining b-subdir

Checking in a-subdir/subsubdir/fish.c;
/usr/local/cvs/myproj/a-subdir/subsubdir/fish.c,v <-- fish.c
new revision: 1.2; previous revision: 1.1

done

Checking in b-subdir/random.c;
/usr/local/cvs/myproj/b-subdir/random.c,v <-- random.c
new revision: 1.2; previous revision: 1.1

An Overview of CVS

done
floss$

Take a moment to read over the output carefully. Most of what it says is pretty self-
explanatory. One thing you may notice is that revision numbers have been incremented
(as expected), but the original revisions are listed as 1.1 instead of 1.1.1.1 as we saw in the
Entries file earlier.

There is an explanation for this discrepancy, but it’s not very important. It concerns a
special meaning that CVS attaches to revision 1.1.1.1. For most purposes, we can just say
that files receive a revision number of 1.1 when imported, but the number is displayed — for
reasons known only to CVS — as 1.1.1.1 in the Entries file, until the first commit.

Revision Numbers

Each file in a project has its own revision number. When a file is committed, the last
portion of the revision number is incremented by one. Thus, at any given time, the various
files comprising a project may have very different revision numbers. This just means that
some files have been changed (committed) more often than others.

(You may be wondering, what’s the point of the part to the left of the decimal point,
if only the part on the right ever changes? Actually, although CVS never automatically
increments the number on the left, that number can be incremented on request by a user.
This is a rarely used feature, and we won’t cover it in this tour.)

In the example project that we’ve been using, we just committed changes to three files.
Each of those files is now revision 1.2, but the remaining files in the project are still revision
1.1. When you check out a project, you get each file at its highest revision so far. Here
is what gsmith would see if he checked out myproj right now and looked at the revision
numbers for the top-level directory:

paste$ cvs -q -d :pserver:gsmith@cvs.foobar.com:/usr/local/cvs co myproj
U myproj/README.txt

myproj/hello.c

myproj/a-subdir/whatever.c
myproj/a-subdir/subsubdir/fish.c
myproj/b-subdir/random.c

paste$ cd myproj/CVS

paste$ cat Entries

/README.txt/1.1.1.1/Sun Apr 18 18:18:22 1999//
/hello.c/1.2/Mon Apr 19 06:35:15 1999//
D/a-subdir////

D/b-subdir////

paste$

The file hello.c (among others) is now at revision 1.2, while README.txt is still at the
initial revision (revision 1.1.1.1, also known as 1.1).

If he adds the line
printf ("between hello and goodbye\n");

agcadag

to hello.c and commit it, the file’s revision number will be incremented once more:

Open Source Development With CVS

paste$ cvs ci -m "added new middle line"

cvs commit: Examining .

cvs commit: Examining a-subdir

cvs commit: Examining a-subdir/subsubdir

cvs commit: Examining b-subdir

Checking in hello.c;
/usr/local/cvs/myproj/hello.c,v <-— hello.c
new revision: 1.3; previous revision: 1.2
done

paste$

Now hello.c is revision 1.3, fish.c and random.c still are revision 1.2, and every other file
is revision 1.1.

Note: that the command was given as cvs ci instead of cvs commit. Most CVS commands
have short forms, to make typing easier. For checkout, update, and commit, the abbreviated
versions are co, up, and ci, respectively. You can get a list of all of the short forms by running
the command cvs --help-synonyms.

You can usually ignore a file’s revision number. In most situations, the numbers are
just internal bookkeeping that CVS handles automatically. However, being able to find and
compare revision numbers is extremely handy when you have to retrieve (or diff against)
an earlier copy of a file.

Examining the Entries file isn’t the only way to discover a revision number. You can
also use the status command

paste$ cvs status hello.c

File: hello.c Status: Up-to—-date
Working revision: 1.3 Tue Apr 20 02:34:42 1999
Repository revision: 1.3 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

which, if invoked without any files being named, shows the status of every file in the
project:

paste$ cvs status
cvs status: Examining.

File: README.txt Status: Up-to-date
Working revision: 1.1.1.1 Sun Apr 18 18:18:22 1999
Repository revision: 1.1.1.1 /usr/local/cvs/myproj/README.txt,v
Sticky Tag: (none)
Sticky Date: (none)

Sticky Options: (none)

An Overview of CVS

File: hello.c Status: Up-to-date
Working revision: 1.3 Tue Apr 20 02:34:42 1999
Repository revision: 1.3 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

cvs status: Examining a-subdir

File: whatever.c Status: Up-to-date
Working revision: 1.1.1.1 Sun Apr 18 18:18:22 1999
Repository revision: 1.1.1.1 /usr/local/cvs/myproj/a-subdir/whatever.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

cvs status: Examining a-subdir/subsubdir

File: fish.c Status: Up-to-date

Working revision: 1.2 Mon Apr 19 06:35:27 1999
Repository revision: 1.2 /usr/local/cvs/myproj/
a-subdir/subsubdir/fish.c,v

Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

cvs status: Examining b-subdir

File: random.c Status: Up-to—-date
Working revision: 1.2 Mon Apr 19 06:35:27 1999
Repository revision: 1.2 /usr/local/cvs/myproj/b-subdir/random.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)
paste$

Just ignore the parts of that output that you don’t understand. In fact, that’s generally
good advice with CVS. Often, the one little bit of information you’re looking for will be
accompanied by reams of information that you don’t care about at all, and maybe don’t
even understand. This situation is normal. Just pick out what you need, and don’t worry
about the rest.

Open Source Development With CVS

In the previous example, the parts we care about are the first three lines (not counting
the blank line) of each file’s status output. The first line is the most important; it tells you
the file’s name, and its status in the working copy. All of the files are currently in sync
with the repository, so they all say Up-to-date. However, if random.c has been modified
but not committed, it might read like this:

File: random.c Status: Locally Modified
Working revision: 1.2 Mon Apr 19 06:35:27 1999
Repository revision: 1.2 /usr/local/cvs/myproj/b-subdir/random.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

The Working revision and Repository revision tell you whether the file is out of sync
with the repository. Returning to our original working copy (jrandom’s copy, which hasn’t
seen the new change to hello.c yet), we see:

floss$ cvs status hello.c

File: hello.c Status: Needs Patch
Working revision: 1.2 Mon Apr 19 02:17:07 1999
Repository revision: 1.3 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

floss$

This tells us that someone has committed a change to hello.c, bringing the repository
copy to revision 1.3, but that this working copy is still on revision 1.2. The line Status:
Needs Patch means that the next update will retrieve those changes from the repository
and "patch" them into the working copy’s file.

Let’s pretend for the moment that we don’t know anything about gsmith’s change to
hello.c, so we don’t run status or update. Instead, we just start editing the file, making a
slightly different change at the same location. This brings us to our first conflict.

Detecting And Resolving Conflicts

Detecting a conflict is easy enough. When you run update, CVS tells you, in no uncertain
terms, that there’s a conflict. But first, let’s create the conflict. We edit hello.c to insert
the line

printf ("this change will conflict\n");
right where gsmith committed this:

printf ("between hello and goodbye\n");
At this point, the status of our copy of hello.c is

An Overview of CVS

floss$ cvs status hello.c

File: hello.c Status: Needs Merge
Working revision: 1.2 Mon Apr 19 02:17:07 1999
Repository revision: 1.3 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

floss$

meaning that there are changes both in the repository and the working copy, and these
changes need to be merged. (CVS isn’t aware that the changes will conflict, because we
haven’t run update yet.) When we do the update, we see this:

floss$ cvs update hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.2

retrieving revision 1.3

Merging differences between 1.2 and 1.3 into hello.c
rcsmerge: warning: conflicts during merge

cvs update: conflicts found in hello.c

C hello.c

floss$

The last line of output is the giveaway. The C in the left margin next to the filename
indicates that changes have been merged, but that they conflict. The contents of hello.c
now shows both changes:

#include <stdio.h>

void
main ()
{
printf ("Hello, world!\n");
<<<<K<K<K< hello.c
printf ("this change will conflict\n");

printf ("between hello and goodbye\n");
>>>>>>> 1.3

printf ("Goodbye, world!\n");
}

Conflicts are always shown delimited by conflict markers, in the following format:

<<<<<<< (filename)
the uncommitted changes in the working copy
blah blah blah

the new changes that came from the repository

Open Source Development With CVS

blah blah blah
and so on
>>>>>>> (latest revision number in the repository)

The Entries file also shows that the file is in a halfway state at the moment:

floss$ cat CVS/Entries

/README.txt/1.1.1.1/Sun Apr 18 18:18:22 1999//
D/a-subdir////

D/b-subdir////

/hello.c/1.3/Result of merge+Tue Apr 20 03:59:09 1999//
floss$

The way to resolve the conflict is to edit the file so that it contains whatever text
is appropriate, removing the conflict markers in the process, and then to commit. This
doesn’t necessarily mean choosing one change over another; you could decide neither change
is sufficient and rewrite the conflicting section (or indeed the whole file) completely. In this
case, we'll adjust in favor of the first change, but with capitalization and punctuation slightly
different from gsmith’s:

floss$ emacs hello.c
(make the edits...)

floss$ cat hello.c

#include <stdio.h>

void
main ()
{
printf ("Hello, world!\n");
printf ("BETWEEN HELLO AND GOODBYE.\n");
printf ("Goodbye, world!\n");
}
floss$ cvs ci -m "adjusted middle line"
cvs commit: Examining .
cvs commit: Examining a-subdir
cvs commit: Examining a-subdir/subsubdir
cvs commit: Examining b-subdir
Checking in hello.c;
/usr/local/cvs/myproj/hello.c,v <- hello.c
new revision: 1.4; previous revision: 1.3
done
floss$

Finding Out Who Did What (Browsing Log Messages)

By now, the project has undergone several changes. If you're trying to get an overview
of what has happened so far, you don’t necessarily want to examine every diff in detail.
Browsing the log messages would be ideal, and you can accomplish this with the log com-
mand:

An Overview of CVS

floss$ cvs log
(pages upon pages of output omitted)

The log output tends to be a bit verbose. Let’s look at the log messages for just one file:

floss$ cvs log hello.c
RCS file: /usr/local/cvs/myproj/hello.c,v
Working file: hello.c
head: 1.4
branch:
locks: strict
access list:
symbolic names:
start: 1.1.1.1
jrandom: 1.1.1
keyword substitution: kv
total revisions: 5; selected revisions: 5
description:
revision 1.4
date: 1999/04/20 04:14:37; author: jrandom; state: Exp; lines: +1 -1
adjusted middle line
revision 1.3
date: 1999/04/20 02:30:05; author: gsmith; state: Exp; lines: +1 -0
added new middle line
revision 1.2
date: 1999/04/19 06:35:15; author: jrandom; state: Exp; lines: +1 -0
print goodbye too
revision 1.1
date: 1999/04/18 18:18:22; author: jrandom; state: Exp;
branches: 1.1.1;
Initial revision
revision 1.1.1.1
date: 1999/04/18 18:18:22; author: jrandom; state: Exp; lines: +0 -0
initial import into CVS

floss$

As usual, there’s a lot of information at the top that you can just ignore. The good stuff
comes after each line of dashes, in a format that is self-explanatory.

When many files are sent in the same commit, they all share the same log message; a fact
that can be useful in tracing changes. For example, remember back when we committed
fish.c and random.c simultaneously? It was done like this:

floss$ cvs commit -m "filled out C code"
Checking in a-subdir/subsubdir/fish.c;

Open Source Development With CVS

/usr/local/cvs/myproj/a-subdir/subsubdir/fish.c,v <-

new revision: 1.2; previous revision: 1.1
done

Checking in b-subdir/random.c;
/usr/local/cvs/myproj/b-subdir/random.c,v <-
new revision: 1.2; previous revision: 1.1

fish.c

random.c

done
floss$

The effect of this was to commit both files with the same log message: "Filled out C
code." (As it happened, both files started at revision 1.1 and went to 1.2, but that’s just a
coincidence. If random.c had been at revision 1.29, it would have moved to 1.30 with this
commit, and its revision 1.30 would have had the same log message as fish.c’s revision 1.2.)

When you run cvs log on them, you’ll see the shared message:

floss$ cvs log a-subdir/subsubdir/fish.c b-subdir/random.c

RCS file: /usr/local/cvs/myproj/a-subdir/subsubdir/fish.c,v
Working file: a-subdir/subsubdir/fish.c

head: 1.2
branch:
locks: strict

access list:
symbolic names:
start: 1.1.1.1
jrandom: 1.1.1
keyword substitution: kv
total revisions: 3;
description:
revision 1.2
date: 1999/04/19 06:35:27;
filled out C code
revision 1.1
date: 1999/04/18 18:18:22;
branches: 1.1.1;
Initial revision
revision 1.1.1.1
date: 1999/04/18 18:18:22;
initial import into CVS

selected revisions: 3

author: jrandom; state: Exp; lines: +8 -1
author: jrandom; state: Exp;
author: jrandom; state: Exp; 1lines: +0 -0

RCS file: /usr/local/cvs/myproj/b-subdir/random.c,v
Working file: b-subdir/random.c

head: 1.2
branch:

locks: strict

An Overview of CVS

access list:
symbolic names:
start: 1.1.1.1
jrandom: 1.1.1
keyword substitution: kv
total revisions: 3; selected revisions: 3
description:
revision 1.2
date: 1999/04/19 06:35:27; author: jrandom; state: Exp; lines: +8 -1
filled out C code
revision 1.1
date: 1999/04/18 18:18:22; author: jrandom; state: Exp;
branches: 1.1.1;
Initial revision
revision 1.1.1.1
date: 1999/04/18 18:18:22; author: jrandom; state: Exp; lines: +0 -0
initial import into CVS

floss$

From this output, you’ll know that the two revisions were part of the same commit
(the fact that the timestamps on the two revisions are the same, or very close, is further
evidence).

Browsing log messages is a good way to get a quick overview of what’s been going on in a
project or to find out what happened to a specific file at a certain time. There are also free
tools available to convert raw cvs log output to more concise and readable formats (such as
GNU ChangeLog style); we won’t cover those tools in this tour, but they’ll be introduced
in [Third-Party Tools], page 203.

Examining And Reverting Changes

Suppose that, in the course of browsing the logs, gsmith sees that jrandom made the most
recent change to hello.c:

revision 1.4
date: 1999/04/20 04:14:37; author: jrandom; state: Exp; lines: +1 -1
adjusted middle line

and wonders what jrandom did? In formal terms, the question that gsmith is asking is,
"What’s the difference between my revision (1.3) of hello.c, and jrandom’s revision right
after it (1.4)?" The way to find out is with the diff command, but this time by comparing
two past revisions using the -r command option to specify both of them:

paste$ cvs diff -¢ -r 1.3 -r 1.4 hello.c
Index: hello.c

Open Source Development With CVS

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.3

retrieving revision 1.4

diff -c -r1.3 -r1.4

***x hello.c 1999/04/20 02:30:05 1.3
--- hello.c 1999/04/20 04:14:37 1.4
st ok ok ok ok ok ok ok ok ok ok ok ok ok ok
*kk 4,9 Kokkk

main ()

{

printf ("Hello, world!\n");
! printf ("between hello and goodbye\n");
printf ("Goodbye, world!\n");

}
—_— 4’9 R
main ()
{
printf ("Hello, world!\n");
! printf ("BETWEEN HELLO AND GOODBYE.\n");
printf ("Goodbye, world!\n");
}
paste$

The change is pretty clear, when viewed this way. Because the revision numbers are
given in chronological order (usually a good idea), the diff shows them in order. If only one
revision number is given, CVS uses the revision of the current working copy for the other.

When gsmith sees this change, he instantly decides he likes his way better and resolves
to "undo"-that is, to step back by one revision.

However, this doesn’t mean that he wants to lose his revision 1.4. Although, in an
absolute technical sense, it’s probably possible to achieve that effect in CVS, there’s almost
never any reason to do so. It’s much preferable to keep revision 1.4 in the history and make
a new revision 1.5 that looks exactly like 1.3. That way the undo event itself is part of the
file’s history.

The only question is, how can you retrieve the contents of revision 1.3 and put them
into 1.57

In this particular case, because the change is a very simple one, gsmith can probably just
edit the file by hand to mirror revision 1.3 and then commit. However, if the changes are
more complex (as they usually are in a real-life project), trying to re-create the old revision
manually will be hopelessly error-prone. Therefore, we’ll have gsmith use CVS to retrieve
and recommit the older revision’s contents.

There are two equally good ways to do this: the slow, plodding way and the fast, fancy
way. We'll examine the slow, plodding way first.

The Slow Method Of Reverting

This method involves passing the -p flag to update, in conjunction with -r. The -p option
sends the contents of the named revision to standard output. By itself, this isn’t terribly

An Overview of CVS

helpful; the contents of the file fly by on the display, leaving the working copy unchanged.
However, by redirecting the standard output into the file, the file will now hold the contents
of the older revision. It’s just as though the file had been hand-edited into that state.

First, though, gsmith needs to get up to date with respect to the repository:

paste$ cvs update

cvs update: Updating .

U hello.c

cvs update: Updating a-subdir

cvs update: Updating a-subdir/subsubdir
cvs update: Updating b-subdir

paste$ cat hello.c

#include <stdio.h>

void

main ()

{
printf ("Hello, world!\n");
printf ("BETWEEN HELLO AND GOODBYE.\n");
printf ("Goodbye, world!\n");

}

paste$

Next, he runs update -p to make sure that the revision 1.3 is the one he wants:

paste$ cvs update -p -r 1.3 hello.c

Checking out hello.c

RCS: /usr/local/cvs/myproj/hello.c,v
VERS: 1.3

Kok ok ok ok ok o ok ok o o Kok

#include <stdio.h>

void

main ()

{
printf ("Hello, world!\n");
printf ("between hello and goodbye\n");
printf ("Goodbye, world!\n");

}

Oops, there are a few lines of cruft at the beginning. They aren’t actually being sent
to standard output, but rather to standard error, so they’re harmless. Nevertheless, they
make reading the output more difficult and can be suppressed with -Q:

paste$ cvs -Q update -p -r 1.3 hello.c
#include <stdio.h>

void
main ()

{

Open Source Development With CVS

printf ("Hello, world!\n");
printf ("between hello and goodbye\n");
printf ("Goodbye, world!\n");

}
paste$

There — that’s exactly what gsmith was hoping to retrieve. The next step is to put that

paste$ cvs
paste$ cvs

cvs update:

content into the working copy’s file, using a Unix redirect (that’s what the ">" does):

-Q update -p -r 1.3 hello.c > hello.c
update
Updating .

M hello.c
cvs update:
cvs update:
cvs update:
paste$

Updating a-subdir
Updating a-subdir/subsubdir
Updating b-subdir

Now when update is run, the file is listed as modified, which makes sense because its
contents have changed. Specifically, it has the same content as the old revision 1.3 (not
that CVS is aware of its being identical to a previous revision — it just knows the file has
been modified). If gsmith wants to make extra sure, he can do a diff to check:

paste$ cvs -Q diff -c
Index: hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.4
diff -c -r1.4 hello.c

*** hello.c 1999/04/20 04:14:37 1.4

--- hello.c 1999/04/20 06:02:25
st ok ok ok ok ok ok ok ok ok ok ok ok o ok
*okk 4,9 Kokkk
main ()
{
printf ("Hello, world!\n");
! printf ("BETWEEN HELLO AND GOODBYE.\n");
printf ("Goodbye, world!\n");
}
_— 4’9 _
main ()
{
printf ("Hello, world!\n");
! printf ("between hello and goodbye\n");
printf ("Goodbye, world!\n");
}
paste$

Yes, that’s exactly what he wanted: a pure reversion — in fact, it is the reverse of the
diff he previously obtained. Satisfied, he commits:

paste$ cvs

cvs commit:
cvs commit:
cvs commit:
cvs commit:

An Overview of CVS

ci -m "reverted to 1.3 code"
Examining .

Examining a-subdir
Examining a-subdir/subsubdir
Examining b-subdir

Checking in hello.c;
/usr/local/cvs/myproj/hello.c,v <- hello.c
new revision: 1.5; previous revision: 1.4
done

paste$

The Fast Method Of Reverting

The fast, fancy way of reverting is to use the -j (for "join") flag to the update command.
This flag is like -r in that it takes a revision number, and you can use up to two -j’s at once.
CVS calculates the difference between the two named revisions and applies that difference
as a patch to the file in question (so the order in which you give the revisions is important).

Thus, assuming gsmith’s copy is up to date, he can just do this:

paste$ cvs update -j 1.4 -j 1.3 hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.4

retrieving revision 1.3

Merging differences between 1.4 and 1.3 into hello.c

paste$ cvs

cvs update:

M hello.c

cvs update:
cvs update:
cvs update:

paste$ cvs

update
Updating .

Updating a-subdir

Updating a-subdir/subsubdir
Updating b-subdir

ci -m "reverted to 1.3 code" hello.c

Checking in hello.c;
/usr/local/cvs/myproj/hello.c,v <-- hello.c
new revision: 1.5; previous revision: 1.4
done

paste$

When you only need to revert one file, there’s not really much difference between the
plodding and fast methods. Later in the book, you’ll see how the fast method is much
better for reverting multiple files at once. In the meantime, use whichever way you’re more
comfortable with.

Reverting Is Not A Substitute For Communication

In all likelihood, what gsmith did in our example was quite rude. When you’re working
on a real project with other people and you think that someone has committed a bad change,
the first thing you should do is talk to him or her about it. Maybe there’s a good reason

Open Source Development With CVS

for the change, or maybe he or she just didn’t think things through. Either way, there’s no
reason to rush and revert. A full record of everything that happens is stored permanently
in CVS, so you can always revert to a previous revision after consulting with whoever made
the changes.

If you're a project maintainer facing a deadline or you feel you have the right and the
need to revert the change unconditionally, then do so — but follow it immediately with an
email to the author whose change was reverted, explaining why you did it and what needs
to be fixed to recommit the change.

Other Useful CVS Commands

At this point, you should be pretty comfortable with basic CVS usage. T’ll abandon the
tour narrative and introduce a few more useful commands in summarized form.

Adding Files

Adding a file is a two-step process: First you run the add command on it, then commit.
The file won’t actually appear in the repository until commit is run:

floss$ cvs add newfile.c

cvs add: scheduling file ’newfile.c’ for addition
cvs add: use ’cvs commit’ to add this file permanently
floss$ cvs ci -m "added newfile.c" newfile.c

RCS file: /usr/local/cvs/myproj/newfile.c,v

done

Checking in newfile.c;
/usr/local/cvs/myproj/mewfile.c,v <- newfile.c
initial revision: 1.1

done

floss$

Adding Directories

Unlike adding a file, adding a new directory is done in one step; there’s no need to do a
commit afterwards:

floss$ mkdir c-subdir

floss$ cvs add c-subdir

Directory /usr/local/cvs/myproj/c-subdir added to the repository

floss$

If you look inside the new directory in the working copy, you'll see that a CVS subdi-

rectory was created automatically by add:

floss$ 1ls c-subdir

cvs/
floss$ 1s c-subdir/CVS
Entries Repository Root

floss$

An Overview of CVS

Now you can add files (or new directories) inside it, as with any other working copy
directory.

CVS And Binary Files

Until now, I've left unsaid the dirty little secret of CVS, which is that it doesn’t handle
binary files very well (well, there are other dirty little secrets, but this definitely counts as
one of the dirtiest). It’s not that CVS doesn’t handle binaries at all; it does, just not with
any great panache.

All the files we’ve been working with until now have been plain text files. CVS has some
special tricks for text files. For example, when it’s working between a Unix repository and
a Windows or Macintosh working copy, it converts file line endings appropriately for each
platform. For example, Unix convention is to use a linefeed (LF) only, whereas Windows
expects a carriage return/linefeed (CRLF) sequence at the end of each line. Thus, the files
in a working copy on a Windows machine will have CRLF endings, but a working copy of
the same project on a Unix machine will have LF endings (the repository itself is always
stored in LF format).

Another trick is that CVS detects special strings, known as RCS keyword strings, in text
files and replaces them with revision information and other useful things. For example, if
your file contains this string

$Revision$

CVS will expand on each commit to include the revision number. For example, it may
get expanded to

$Revision: 1.3 $

CVS will keep that string up to date as the file is developed. (The various keyword
strings are documented in [Advanced CVS], page 97 and [Third-Party Tools], page 203.)

This string expansion is a very useful feature in text files, as it allows you to see the
revision number or other information about a file while you’re editing it. But what if the
file is a JPG image? Or a compiled executable program? In those kinds of files, CVS
could do some serious damage if it blundered around expanding any keyword string that it
encountered. In a binary, such strings may even appear by coincidence.

Therefore, when you add a binary file, you have to tell CVS to turn off both keyword
expansion and line-ending conversion. To do so, use -kb:

floss$ cvs add -kb filename
floss$ cvs ci -m "added blah" filename
(etc)

Also, in some cases (such as text files that are likely to contain spurious keyword strings),
you may wish to disable just the keyword expansion. That’s done with -ko:

floss$ cvs add -ko filename
floss$ cvs ci -m "added blah" filename
(etc)

(In fact, this chapter is one such document, because of the $Revision$ example shown
here.)

Open Source Development With CVS

Note that you can’t meaningfully run cvs diff on two revisions of a binary file. Diff
uses a text-based algorithm that can only report whether two binary files differ, but not
how they differ. Future versions of CVS may provide a way to diff binary files.

Removing Files

Removing a file is similar to adding one, except there’s an extra step: You have to remove
the file from the working copy first:

floss$ rm newfile.c

floss$ cvs remove newfile.c

cvs remove: scheduling ’newfile.c’ for removal

cvs remove: use ’cvs commit’ to remove this file permanently
floss$ cvs ci -m "removed newfile.c" newfile.c

Removing newfile.c;

/usr/local/cvs/myproj/newfile.c,v <- mnewfile.c

new revision: delete; previous revision: 1.1

done

floss$

Notice how, in the second and third commands, we name newfile.c explicitly even though
it doesn’t exist in the working copy anymore. Of course, in the commit, you don’t absolutely
need to name the file, as long as you don’t mind the commit encompassing any other
modifications that may have taken place in the working copy.

Removing Directories

As T said before, CVS doesn’t really keep directories under version control. Instead, as a
kind of cheap substitute, it offers certain odd behaviors that in most cases do the "right
thing". One of these odd behaviors is that empty directories can be treated specially. If
you want to remove a directory from a project, you first remove all the files in it

floss$ cd dir

floss$ rm filel file2 file3

floss$ cvs remove filel file2 file3
(output omitted)

floss$ cvs ci -m "removed all files" filel file2 file3
(output omitted)

and then run update in the directory above it with the -P flag:

floss$ cd ..
floss$ cvs update -P
(output omitted)

The -P option tells update to "prune" any empty directories — that is, to remove them
from the working copy. Once that’s done, the directory can be said to have been removed;
all of its files are gone, and the directory itself is gone (from the working copy, at least,
although there is actually still an empty directory in the repository).

An interesting counterpart to this behavior is that when you run a plain update, CVS
does not automatically bring new directories from the repository into your working copy.

An Overview of CVS

There are a couple of different justifications for this, none really worth going into here. The
short answer is that from time to time you should run update with the -d flag, telling it to
bring down any new directories from the repository.

Renaming Files And Directories

Renaming a file is equivalent to creating it under the new name and removing it under the
old. In Unix, the commands are:

floss$ cp oldname newname
floss$ rm oldname

Here’s the equivalent in CVS:

floss$ mv oldname newname

floss$ cvs remove oldname
(output omitted)

floss$ cvs add newname
(output omitted)

floss$ cvs ¢i -m "renamed oldname to newname" oldname newname
(output omitted)

floss$

For files, that’s all there is to it. Renaming directories is not done very differently: create
the new directory, cvs add it, move all the files from the old directory to the new one, cvs
remove them from the old directory, cvs add them in the new one, cvs commit so everything
takes effect, and then do cvs update -P to make the now-empty directory disappear from
the working copy. That is to say:

floss$ mkdir newdir

floss$ cvs add newdir

floss$ mv olddir/* newdir

mv: newdir/CVS: cannot overwrite directory
floss$ cd olddir

floss$ cvs rm foo.c bar.txt

floss$ cd ../newdir

floss$ cvs add foo.c bar.txt

floss$ cd ..

floss$ cvs commit -m "moved foo.c and bar.txt from olddir to newdir"
floss$ cvs update -P

Note: the warning message after the third command. It’s telling you that it can’t copy
olddir’s CVS/ subdirectory into newdir because newdir already has a directory of that name.
This is fine, because you want olddir to keep its CVS/ subdirectory anyway.

Obviously, moving directories around can get a bit cumbersome. The best policy is to
try to come up with a good layout when you initially import your project so you won’t have
to move directories around very often. Later, you’ll learn about a more drastic method of
moving directories that involves making the change directly in the repository. However,
that method is best saved for emergencies; whenever possible, it’s best to handle everything
with CVS operations inside working copies.

Open Source Development With CVS

Avoiding Option Fatigue

Most people tire pretty quickly of typing the same option flags with every command. If you
know that you always want to pass the -Q global option or you always want to use -c with
diff, why should you have to type it out each time?

There is help, fortunately. CVS looks for a .cvsrc file in your home directory. In that
file, you can specify default options to apply to every invocation of CVS. Here’s an example
.CVSrC:

diff -c
update -P
cvs -q

If the leftmost word on a line matches a CVS command (in its unabbreviated form), the
corresponding options are used for that command every time. For global options, you just
use cvs. So, for example, every time that user runs cvs diff, the -c¢ flag is automatically
included.

Getting Snapshots (Dates And Tagging)

Let’s return to the example of the program that’s in a broken state when a bug report
comes in. The developer suddenly needs access to the entire project as it was at the time of
the last release, even though many files may have been changed since then, and each file’s
revision number differs from the others. It would be far too time-consuming to look over
the log messages, figure out what each file’s individual revision number was at the time of
release, and then run update (specifying a revision number with -r) on each one of them.
In medium- to large-sized projects (tens to hundreds of files), such a process would be too
unwieldy to attempt.

CVS, therefore, provides a way to retrieve previous revisions of the files in a project en
masse. In fact, it provides two ways: by date, which selects the revisions based on the time
that they were committed, and by tag, which retrieves a previously marked "snapshot" of
the project.

Which method you use depends on the situation. The date-based retrievals are done
by passing update the -D flag, which is similar to -r but takes dates instead of revision
numbers:

floss$ cvs —-q update -D "1999-04-19"
U hello.c

U a-subdir/subsubdir/fish.c

U b-subdir/random.c

floss$

With the -D option, update retrieves the highest revision of each file as of the given date,
and it will revert the files in the working copy to prior revisions if necessary.

When you give the date, you can, and often should, include the time. For example, the
previous command ended up retrieving revision 1.1 of everything (only three files showed
changes, because all of the others are still at revision 1.1 anyway). Here’s the status of
hello.c to prove it:

An Overview of CVS

floss$ cvs -Q status hello.c

File: hello.c Status: Up-to-date
Working revision: 1.1.1.1 Sat Apr 24 22:45:03 1999
Repository revision: 1.1.1.1 /usr/local/cvs/myproj/hello.c,v
Sticky Date: 99.04.19.05.00.00

floss$

But a glance back at the log messages from earlier in this chapter shows that revision
1.2 of hello.c was definitely committed on April 19, 1999. So why did we now get revision
1.1 instead of 1.27

The problem is that the date "1999-04-19" was interpreted as meaning "the midnight
that begins 1999-04-19" — that is, the very first instant on that date. This is probably not
what you want. The 1.2 commit took place later in the day. By qualifying the date more
precisely, we can retrieve revision 1.2:

floss$ cvs -q update -D "1999-04-19 23:59:59"
U hello.c

U a-subdir/subsubdir/fish.c

U b-subdir/random.c

floss$ cvs status hello.c

File: hello.c Status: Locally Modified
Working revision: 1.2 Sat Apr 24 22:45:22 1999
Repository revision: 1.2 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: (none)
Sticky Date: 99.04.20.04.59.59
Sticky Options: (none)
floss$

We’re almost there. If you look closely at the date/time on the Sticky Date line, it seems
to indicate 4:59:59 A.M., not 11:59 as the command requested (later we’ll get to what the
"sticky" means). As you may have guessed, the discrepancy is due to the difference between
local time and Universal Coordinated Time (also known as "Greenwich mean time"). The
repository always stores dates in Universal Time, but CVS on the client side usually assumes
the local system time zone. In the case of -D, this is rather unfortunate because you’re
probably most interested in comparing against the repository time and don’t care about
the local system’s idea of time. You can get around this by specifying the GMT zone in the
command:

floss$ cvs -q update -D "1999-04-19 23:59:59 GMT"
U hello.c
floss$ cvs -q status hello.c

File: hello.c Status: Up-to-date
Working revision: 1.2 Sun Apr 25 22:38:53 1999
Repository revision: 1.2 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: (none)
Sticky Date: 99.04.19.23.59.59

Sticky Options: (none)

Open Source Development With CVS

floss$

There — that brought the working copy back to the final commits from April 19 (unless
there were any commits during the last second of the day, which there weren’t).

What happens now if you run update?

floss$ cvs update

cvs update: Updating .

cvs update: Updating a-subdir

cvs update: Updating a-subdir/subsubdir
cvs update: Updating b-subdir

floss$

Nothing happens at all. But you know that there are more recent versions of at least
three files. Why aren’t these included in your working copy?

That’s where the "sticky" comes in. Updating ("downdating"?) with the -D flag causes
the working copy to be restricted permanently to that date or before. In CVS terminol-
ogy, the working copy has a "sticky date" set. Once a working copy has acquired a sticky
property, it stays sticky until told otherwise. Therefore, subsequent updates will not auto-
matically retrieve the most recent revision. Instead, they’ll stay restricted to the sticky date.

Stickiness can be revealed by running cvs status or by directly examining the CVS/Entries
file:

floss$ cvs -q update -D "1999-04-19 23:59:59 GMT"

U hello.c

floss$ cat CVS/Entries

D/a-subdir////

D/b-subdir////

D/c-subdir////

/README.txt/1.1.1.1/Sun Apr 18 18:18:22 1999//D99.04.19.23.59.59
/hello.c/1.2/Sun Apr 25 23:07:29 1999//D99.04.19.23.59.59

floss$

If you were to modify hello.c and then try to commit

floss$ cvs update

M hello.c

floss$ cvs ci -m "trying to change the past"

cvs commit: cannot commit with sticky date for file ’hello.c’
cvs [commit aborted]: correct above errors first!

floss$

CVS would not permit the commit to happen because that would be like allowing you
to go back and change the past. CVS is all about record keeping and, therefore, will not
allow you to do that.

This does not mean CVS is unaware of all the revisions that have been committed since
that date, however. You can still compare the sticky-dated working copy against other
revisions, including future ones:

floss$ cvs -q diff -c -r 1.5 hello.c
Index: hello.c

An Overview of CVS

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.5
diff -c -r1.5 hello.c

xx% hello.c 1999/04/24 22:09:27 1.5
--- hello.c 1999/04/25 00:08:44
sk ok ke o o sk sk sk ok ok ke sk ok sk ok

*kk 3,9 sokkok
void
main ()
{
printf ("Hello, world!\n");
- printf ("between hello and goodbye\n") ;
printf ("Goodbye, world!\n");

+ /% this line was added to a downdated working copy */
printf ("Hello, world!\n");
printf ("Goodbye, world!\n");
}
This diff reveals that, as of April 19, 1999, the between hello and goodbye line had not
yet been added. It also shows the modification that we made to the working copy (adding
the comment shown in the preceding code snippet).

You can remove a sticky date (or any sticky property) by updating with the -A flag (-A
stands for "reset", don’t ask me why), which brings the working copy back to the most
recent revisions:

floss$ cvs -q update -A
U hello.c
floss$ cvs status hello.c

File: hello.c Status: Up-to-date
Working revision: 1.5 Sun Apr 25 22:50:27 1999
Repository revision: 1.5 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)
floss$

Acceptable Date Formats

CVS accepts a wide range of syntaxes to specify dates. You’ll never go wrong if you use
ISO 8601 format (that is, the International Standards Organization standard #8601, see
also www.saggara.demon.co.uk/datefmt.htm), which is the format used in the preceding
examples. You can also use Internet email dates as described in RFC 822 and RFC 1123

Open Source Development With CVS

(see www.rfc-editor.org/rfc/). Finally, you can use certain unambiguous English constructs
to specify dates relative to the current date.

You will probably never need all of the formats available, but here are some more exam-
ples to give you an idea of what CVS accepts:

floss$ cvs update -D "19 Apr 1999"

floss$ cvs update -D "19 Apr 1999 20:05"

floss$ cvs update -D "19/04/1999"

floss$ cvs update -D "3 days ago"

floss$ cvs update -D "5 years ago"

floss$ cvs update -D "19 Apr 1999 23:59:59 GMT"
floss$ cvs update -D "19 Apr"

The double quotes around the dates are there to ensure that the Unix shell treats the
date as one argument even if it contains spaces. The quotes will do no harm if the date
doesn’t contain spaces, so it’s probably best to always use them.

Marking A Moment In Time (Tags)

Retrieving by date is useful when the mere passage of time is your main concern. But more
often what you really want to do is retrieve the project as it was at the time of a specific
event — perhaps a public release, a known stable point in the software’s development, or the
addition or removal of some major feature.

Trying to remember the date when that event took place or deducing the date from log
messages would be a tedious process. Presumably, the event, because it was important,
was marked as such in the formal revision history. The method CVS offers for making such
marks is known as tagging.

Tags differ from commits in that they don’t record any particular textual change to files,
but rather a change in the developers’ attitude about the files. A tag gives a label to the
collection of revisions represented by one developer’s working copy (usually, that working
copy is completely up to date so the tag name is attached to the "latest and greatest"
revisions in the repository).

Setting a tag is as simple as this:

floss$ cvs -q tag Release-1999_05_01
T README.txt

T hello.c

T a-subdir/whatever.c

T a-subdir/subsubdir/fish.c

T b-subdir/random.c

floss$

That command associates the symbolic name "Release-1999_05_01" with the snapshot
represented by this working copy. Defined formally, snapshot means a set of files and
associated revision numbers from the project. Those revision numbers do not have to be
the same from file to file and, in fact, usually aren’t. For example, assuming that tag was
done on the same myproj directory that we’ve been using throughout this chapter and that
the working copy was completely up to date, the symbolic name "Release-1999_05_01" will

An Overview of CVS

be attached to hello.c at revision 1.5, to fish.c at revision 1.2, to random.c at revision 1.2,
and to everything else at revision 1.1.

It may help to visualize a tag as a path or string linking various revisions of files in the
project. In Figure 2.1, an imaginary string passes through the tagged revision number of
each file in a project.

File A File B File C File D File E
1.1 1.1 1.1 1.1 1.1
-——1.2- 1.2 1.2 1.2 1.2
1.3 | 1.3 1.3 1.3 1.3
\ 1.4 -1.4-, 1.4 1.4
\ 1.5 / 1.5 \ 1.5 1.5
\ 1.6 / 1.6 | 1.6 1.6
\ 1.7 / I 1.7 1.7
\ 1.8 / I 1.8 -1.8-—————- >
\ 1.9 / | 1.9 / 1.9
€1.10° | 1.10 / 1.10
1.11 I 1.11 I
I 1.12 I
I 1.13 I
\ 1.14 I
\ 1.15 /
\ 1.16 /
~1.17-°

[Figure 2.1: How a tag might stand in relation to files’s revisions.]

But if you pull the string taut and sight directly along it, you’ll see a particular moment
in the project’s history — namely, the moment that the tag was set (Figure 2.2).

File A File B File C File D File E
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.1 1.8
1.2 1.9
1.3 1.10 1.1
1.4 1.11 1.2
1.5 1.12 1.3
1.6 1.13 1.4

Open Source Development With CVS

1.7 1.1 1.14 1.5
1.8 1.2 1.15 1.6
1.1 1.9 1.3 1.16 1.7
-—1.2-—————— 1.10--————-—- 1.4-—————- 1.17---—--——- 1.8-————— >
1.3 1.11 1.5 1.17 1.9
1.6 1.17 1.10

[Figure 2.2: The same tag as a "straight sight" through the revision history.]

As you continue to edit files and commit changes, the tag will not move along with the
increasing revision numbers. It stays fixed, "stickily", at the revision number of each file at
the time the tag was made.

Given their importance as descriptors, it’s a bit unfortunate that log messages can’t be
included with tags or that the tags themselves can’t be full paragraphs of prose. In the
preceding example, the tag is fairly obviously stating that the project was in a releasable
state as of a certain date. However, sometimes you may want to make snapshots of a more
complex state, which can result in ungainly tag names such as:

floss$ cvs tag testing-release-3_pre-19990525-public-release

As a general rule, you should try to keep tags as terse as possible while still including
all necessary information about the event that you're trying to record. When in doubt, err
on the side of being overly descriptive — you'll be glad later when you're able to tell from
some verbose tag name exactly what circumstance was recorded.

You’ve probably noticed that no periods or spaces were used in the tag names. CVS
is rather strict about what constitutes a valid tag name. The rules are that it must start
with a letter and contain letters, digits, hyphens ("-"), and underscores ("_"). No spaces,
periods, colons, commas, or any other symbols may be used.

To retrieve a snapshot by tag name, the tag name is used just like a revision number.
There are two ways to retrieve snapshots: You can check out a new working copy with a
certain tag, or you can switch an existing working copy over to a tag. Both result in a
working copy whose files are at the revisions specified by the tag.

Most of the time, what you’re trying to do is take a look at the project as it was at the
time of the snapshot. You may not necessarily want to do this in your main working copy,
where you presumably have uncommitted changes and other useful states built up, so let’s
assume you just want to check out a separate working copy with the tag. Here’s how (but
make sure to invoke this somewhere other than in your existing working copy or its parent
directory!):

floss$ cvs checkout -r Release-1999_05_01 myproj
cvs checkout: Updating myproj

U myproj/README.txt

U myproj/hello.c

cvs checkout: Updating myproj/a-subdir

U myproj/a-subdir/whatever.c

cvs checkout: Updating myproj/a-subdir/subsubdir
U myproj/a-subdir/subsubdir/fish.c

cvs checkout: Updating myproj/b-subdir

An Overview of CVS

U myproj/b-subdir/random.c
cvs checkout: Updating myproj/c-subdir

We’ve seen the -r option before in the update command, where it preceded a revision
number. In many ways a tag is just like a revision number because, for any file, a given tag
corresponds to exactly one revision number (it’s illegal, and generally impossible, to have
two tags of the same name in the same project). In fact, anywhere you can use a revision
number as part of a CVS command, you can use a tag name instead (as long as the tag has
been set previously). If you want to diff a file’s current state against its state at the time
of the last release, you can do this:

floss$ cvs diff -c -r Release-1999_05_01 hello.c
And if you want to revert it temporarily to that revision, you can do this:
floss$ cvs update -r Release-1999_05_01 hello.c

The interchangeability of tags and revision numbers explains some of the strict rules
about valid tag names. Imagine if periods were legal in tag names; you could have a
tag named "1.3" attached to an actual revision number of "1.47". If you then issued the
command

floss$ cvs update -r 1.3 hello.c

how would CVS know whether you were referring to the tag named "1.3", or the much
earlier revision 1.3 of hello.c? Thus, restrictions are placed on tag names so that they can
always be easily distinguished from revision numbers. A revision number has a period; a
tag name doesn’t. (There are reasons for the other restrictions, too, mostly having to do
with making tag names easy for CVS to parse.)

As you’ve probably guessed by this point, the second method of retrieving a snapshot —
that is, switching an existing working directory over to the tagged revisions-is also done by
updating;:

floss$ cvs update -r Release-1999_05_01
cvs update: Updating .

cvs update: Updating a-subdir

cvs update: Updating a-subdir/subsubdir
cvs update: Updating b-subdir

cvs update: Updating c-subdir

floss$

The preceding command is just like the one we used to revert hello.c to Release-1999_
05_01, except that the filename is omitted because we want to revert the entire project
over. (You can, if you want, revert just one subtree of the project to the tag by invoking
the preceding command in that subtree instead of from the top level, although you hardly
ever would want to do that.)

Note that no files appear to have changed when we updated. The working copy was
completely up to date when we tagged, and no changes had been committed since the
tagging.

However, this does not mean that nothing changed at all. The working copy now knows

that it’s at a tagged revision. When you make a change and try to commit it (let’s assume
we modified hello.c):

Open Source Development With CVS

floss$ cvs -q update

M hello.c

floss$ cvs -q ci -m "trying to commit from a working copy on a tag"

cvs commit: sticky tag ’Release-1999_05_01’ for file ’hello.c’ is not a branch
cvs [commit aborted]: correct above errors first!

floss$

CVS does not permit the commit to happen. (Don’t worry about the exact meaning
of that error message yet — we’ll cover branches next in this chapter.) It doesn’t matter
whether the working copy got to be on a tag via a checkout or an update. Once it is on a tag,
CVS views the working copy as a static snapshot of a moment in history, and CVS won’t
let you change history, at least not easily. If you run cvs status or look at the CVS/Entries
files, you’ll see that there is a sticky tag set on each file. Here’s the top level Entries file,
for example:

floss$ cat CVS/Entries

D/a-subdir////

D/b-subdir////

D/c-subdir////

/README.txt/1.1.1.1/Sun Apr 18 18:18:22 1999//TRelease-1999_05_01
/hello.c/1.5/Tue Apr 20 07:24:10 1999//TRelease-1999_05_01

floss$

Tags, like other sticky properties, are removed with the -A flag to update:

floss$ cvs -q update -A
M hello.c
floss$

The modification to hello.c did not go away, however; CVS is still aware that the file
changed with respect to the repository:

floss$ cvs -q diff -c hello.c
Index: hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.5
diff -c -r1.5 hello.c

*x** hello.c 1999/04/20 06:12:56 1.5
--- hello.c 1999/05/04 20:09:17

sk sk ok ok o o ok K ok ok ok ok ok o

*xkk 6,9 dkkk

--- 6,10 —-

printf ("Hello, world!\n");
printf ("between hello and goodbye\n");
printf ("Goodbye, world!\n");

+ /* a comment on the last line */

}
floss$

Now that you’ve reset with update, CVS will accept a commit:

floss$ cvs ci -m "added comment to end of main function"

An Overview of CVS

cvs commit: Examining .

cvs commit: Examining a-subdir

cvs commit: Examining a-subdir/subsubdir

cvs commit: Examining b-subdir

cvs commit: Examining c-subdir

Checking in hello.c;
/usr/local/cvs/myproj/hello.c,v <- hello.c
new revision: 1.6; previous revision: 1.5
done

floss$

The tag Release-1999_05_01 is still attached to revision 1.5, of course. Compare the
file’s status before and after a reversion to the tag:

floss$ cvs -q status hello.c

File: hello.c Status: Up-to-date
Working revision: 1.6 Tue May 4 20:09:17 1999
Repository revision: 1.6 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)
floss$ cvs -q update -r Release-1999_05_01
U hello.c

floss$ cvs -q status hello.c

File: hello.c Status: Up-to-date
Working revision: 1.5 Tue May 4 20:21:12 1999
Repository revision: 1.5 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: Release-1999_05_01 (revision: 1.5)
Sticky Date: (none)
Sticky Options: (none)

floss$

Now, having just told you that CVS doesn’t let you change history, I’ll show you how
to change history.

Branches

We’ve been viewing CVS as a kind of intelligent, coordinating library. However, it can also
be thought of as a time machine (thanks to Jim Blandy for the analogy). So far, we’ve only
seen how you can examine the past with CVS, without affecting anything. Like all good
time machines, CVS also allows you to go back in time to change the past. What do you get
then? Science fiction fans know the answer to that question: an alternate universe, running
parallel to ours, but diverging from ours at exactly the point where the past was changed. A
CVS branch splits a project’s development into separate, parallel histories. Changes made
on one branch do not affect the other.

Open Source Development With CVS

Branching Basics

Why are branches useful?

Let’s return for a moment to the scenario of the developer who, in the midst of working
on a new version of the program, receives a bug report about an older released version.
Assuming the developer fixes the problem, she still needs a way to deliver the fix to the
customer. It won’t help to just find an old copy of the program somewhere, patch it up
without CVS’s knowledge, and ship it off. There would be no record of what was done;
CVS would be unaware of the fix; and later if something was discovered to be wrong with
the patch, no one would have a starting point for reproducing the problem.

It’s even more ill-advised to fix the bug in the current, unstable version of the sources
and ship that to the customer. Sure, the reported bug may be solved, but the rest of the
code is in a half-implemented, untested state. It may run, but it’s certainly not ready for
prime time.

Because the last released version is thought to be stable, aside from this one bug, the
ideal solution is to go back and correct the bug in the old release — that is, to create an
alternate universe in which the last public release includes this bug fix.

That’s where branches come in. The developer splits off a branch, rooted in the main
line of development (the trunk) not at its most recent revisions, but back at the point of the
last release. Then she checks out a working copy of this branch, makes whatever changes
are necessary to fix the bug, and commits them on that branch, so there’s a record of the
bug fix. Now she can package up an interim release based on the branch and ship it to the
customer.

Her change won’t have affected the code on the trunk, nor would she want it to without
first finding out whether the trunk needs the same bug fix or not. If it does, she can merge
the branch changes into the trunk. In a merge, CVS calculates the changes made on the
branch between the point where it diverged from the trunk and the branch’s tip (its most
recent state), then applies those differences to the project at the tip of the trunk. The
difference between the branch’s root and its tip works out, of course, to be precisely the
bug fix.

Another good way to think of a merge is as a special case of updating. The difference
is that in a merge, the changes to be incorporated are derived by comparing the branch’s
root and tip, instead of by comparing the working copy against the repository.

The act of updating is itself similar to receiving patches directly from their authors and
applying them by hand. In fact, to do an update, CVS calculates the difference (that’s
"difference" as in the diff program) between the working copy and the repository and then
applies that diff to the working copy just as the patch program would. This mirrors the
way in which a developer takes changes from the outside world, by manually applying patch
files sent in by contributors.

Thus, merging the bug fix branch into the trunk is just like accepting some outside
contributor’s patch to fix the bug. The contributor would have made the patch against
the last released version, just as the branch’s changes are against that version. If that area
of code in the current sources hasn’t changed much since the last release, the merge will
succeed with no problems. If the code is now substantially different, however, the merge
will fail with conflict (that is, the patch will be rejected), and some manual fiddling will

An Overview of CVS

be necessary. Usually this is accomplished by reading the conflicting area, making the
necessary changes by hand, and committing. Figure 2.3 shows a picture of what happens
in a branch and merge.

(branch on which bug was fixed)

~
< —_ — — —.
~\
A

—————— point of merge)
. =>
(main line of development)

[Figure 2.3: A branch and then a merge. Time flows left to right.]

We’ll now walk through the steps necessary to make this picture happen. Remember
that it’s not really time that’s flowing from left to right in the diagram, but rather the
revision history. The branch will not have been made at the time of the release, but is
created later, rooted back at the release’s revisions.

In our case, let’s assume the files in the project have gone through many revisions since
they were tagged as Release-1999_05_01, and perhaps files have been added as well. When
the bug report regarding the old release comes in, the first thing we’ll want to do is create
a branch rooted at the old release, which we conveniently tagged Release-1999_05_01.

One way to do this is to first check out a working copy based on that tag, then create
the branch by re-tagging with the -b (branch) option:

floss$ cd ..

floss$ 1s

myproj/

floss$ cvs —-q checkout -d myproj_old_release -r Release-1999_05_01 myproj
myproj_old_release/README. txt
myproj_old_release/hello.c
myproj_old_release/a-subdir/whatever.c
myproj_old_release/a-subdir/subsubdir/fish.c
myproj_old_release/b-subdir/random.c

floss$ 1s

myproj/ myproj_old_release/

floss$ cd myproj_old_release

floss$ 1s

cvs/ README.txt a-subdir/ b-subdir/ hello.c
floss$ cvs -q tag -b Release-1999_05_01-bugfixes

T README. txt

T hello.c

T a-subdir/whatever.c

T a-subdir/subsubdir/fish.c

ccacacag

Open Source Development With CVS

T b-subdir/random.c
floss$

Take a good look at that last command. It may seem somewhat arbitrary that tag is
used to create branches, but there’s actually a reason for it: The tag name will serve as
a label by which the branch can be retrieved later. Branch tags do not look any different
from non-branch tags, and are subject to the same naming restrictions. Some people like to
always include the word branch in the tag name itself (for example, Release-1999_05_01-
bugfix-branch), so they can distinguish branch tags from other kinds of tags. You may
want to do this if you find yourself often retrieving the wrong tag.

(And while we’re at it, note the -d myproj_old_release option to checkout in the
first CVS command. This tells checkout to put the working copy in a directory called
myproj_old_release, so we won’t confuse it with the current version in myproj. Be careful
not to confuse this use of -d with the global option of the same name, or with the -d option
to update.)

Of course, merely running the tag command does not switch this working copy over to
the branch. Tagging never affects the working copy; it just records some extra information
in the repository to allow you to retrieve that working copy’s revisions later on (as a static
piece of history or as a branch, as the case may be).

Retrieval can be done one of two ways (you’re probably getting used to this motif by
now!). You can check out a new working copy on the branch

floss$ pwd
/home/whatever
floss$ cvs co -d myproj_branch -r Release-1999_05_01-bugfixes myproj

or switch an existing working copy over to it:

floss$ pwd
/home/whatever/myproj
floss$ cvs update -r Release-1999_05_01-bugfixes

The end result is the same (well, the name of the new working copy’s top-level directory
may be different, but that’s not important for CVS’s purposes). If your current working
copy has uncommitted changes, you’ll probably want to use checkout instead of update to
access the branch. Otherwise, CVS attempts to merge your changes into the working copy
as it switches it over to the branch. In that case, you might get conflicts, and even if you
didn’t, you’d still have an impure branch. It won’t truly reflect the state of the program
as of the designated tag, because some files in the working copy will contain modifications
made by you.

Anyway, let’s assume that by one method or another you get a working copy on the
desired branch:

floss$ cvs -q status hello.c

File: hello.c Status: Up-to-date
Working revision: 1.5 Tue Apr 20 06:12:56 1999
Repository revision: 1.5 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: Release-1999_05_01-bugfixes

(branch: 1.5.2)
Sticky Date: (none)

An Overview of CVS

Sticky Options: (none)
floss$ cvs -q status b-subdir/random.c

File: random.c Status: Up-to-date
Working revision: 1.2 Mon Apr 19 06:35:27 1999
Repository revision: 1.2 /usr/local/cvs/myproj/b-subdir/random.c,v
Sticky Tag: Release-1999_05_01-bugfixes (branch: 1.2.2)
Sticky Date: (none)
Sticky Options: (none)

floss$

(The contents of those Sticky Tag lines will be explained shortly.) If you modify hello.c
and random.c, and commit

floss$ cvs -q update

M hello.c

M b-subdir/random.c

floss$ cvs ci -m "fixed old punctuation bugs"
cvs commit: Examining .

cvs commit: Examining a-subdir

cvs commit: Examining a-subdir/subsubdir

cvs commit: Examining b-subdir

Checking in hello.c;
/usr/local/cvs/myproj/hello.c,v <- hello.c
new revision: 1.5.2.1; previous revision: 1.5
done

Checking in b-subdir/random.c;
/usr/local/cvs/myproj/b-subdir/random.c,v <- random.c
new revision: 1.2.2.1; previous revision: 1.2
done

floss$

you’ll notice that there’s something funny going on with the revision numbers:

floss$ cvs —-q status hello.c b-subdir/random.c

File: hello.c Status: Up-to-date
Working revision: 1.5.2.1 Wed May 5 00:13:58 1999
Repository revision: 1.5.2.1 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: Release-1999_05_01-bugfixes (branch: 1.5.2)
Sticky Date: (none)
Sticky Options: (none)

File: random.c Status: Up-to-date
Working revision: 1.2.2.1 Wed May 5 00:14:25 1999
Repository revision: 1.2.2.1 /usr/local/cvs/myproj/b-subdir/random.c,v
Sticky Tag: Release-1999_05_01-bugfixes (branch: 1.2.2)
Sticky Date: (none)
Sticky Options: (none)

floss$

Open Source Development With CVS

They now have four digits instead of two!

A closer look reveals that each file’s revision number is just the branch number (as shown
on the Sticky Tag line) plus an extra digit on the end.

What you're seeing is a little bit of CVS’s inner workings. Although you almost always
use a branch to mark a project-wide divergence, CVS actually records the branch on a
per-file basis. This project had five files in it at the point of the branch, so five individual
branches were made, all with the same tag name: Release-1999_05_01-bugfixes.

Most people consider this per-file scheme a rather inelegant implementation on CVS’s
part. It’s a bit of the old RCS legacy showing through-RCS didn’t know how to group files
into projects, and even though CVS does, it still uses code inherited from RCS to handle
branches.

Ordinarily, you don’t need to be too concerned with how CVS is keeping track of things
internally, but in this case, it helps to understand the relationship between branch numbers
and revision numbers. Let’s look at the hello.c file; everything I'm about to say about hello.c
applies to the other files in the branch (with revision/branch numbers adjusted accordingly).

The hello.c file was on revision 1.5 at the point where the branch was rooted. When
we created the branch, a new number was tacked onto the end to make a branch number
(CVS chooses the first unused even, nonzero integer). Thus, the branch number in this case
became 1.5.2. The branch number by itself is not a revision number, but it is the root
(that is, the prefix) of all the revision numbers for hello.c along this branch.

However, when we ran that first CVS status in a branched working copy, hello.c’s revision
number showed up as only 1.5, not 1.5.2.0 or something similar. This is because the initial
revision on a branch is always the same as the trunk revision of the file, where the branch
sprouts off. Therefore, CVS shows the trunk revision number in status output, for as long
as the file is the same on both branch and trunk.

Once we had committed a new revision, hello.c was no longer the same on both trunk
and branch — the branch incarnation of the file had changed, while the trunk remained the
same. Accordingly, hello.c was assigned its first branch revision number. We saw this in
the status output after the commit, where its revision number is clearly 1.5.2.1.

The same story applies to the random.c file. Its revision number at the time of branching
was 1.2, so its first branch is 1.2.2, and the first new commit of random.c on that branch
received the revision number 1.2.2.1.

There is no numeric relationship between 1.5.2.1 and 1.2.2.1 — no reason to think
that they are part of the same branch event, except that both files are tagged with Release-
1999_05_01-bugfixes, and the tag is attached to branch numbers 1.5.2 and 1.2.2 in the
respective files. Therefore, the tag name is your only handle on the branch as a project-wide
entity. Although it is perfectly possible to move a file to a branch by using the revision
number directly

floss$ cvs update -r 1.5.2.1 hello.c
U hello.c
floss$

it is almost always ill-advised. You would be mixing the branch revision of one file with
non-branch revisions of the others. Who knows what losses may result? It is better to use
the branch tag to refer to the branch and do all files at once by not specifying any particular

An Overview of CVS

file. That way you don’t have to know or care what the actual branch revision number is
for any particular file.

It is also possible to have branches that sprout off other branches, to any level of absur-
dity. For example, if a file has a revision number of 1.5.4.37.2.3, its revision history can
be diagrammed like this:

(1.5.2) (1.5.4) <--- (these are branch numbers)
/ \
1.5.2.1 1.5.4.1
| |
1.5.2.2 1.5.4.2
| |

(etc) ...) <--- (collapsed 34 revisions for brevity)

(1.5.4.37.2) <--- (this is also a branch number)
/
/
1.5.4.37.2.1
|
1.5.4.37.2.2

I
1.5.4.37.2.3

[Figure 2.4: An unusually high degree of branching. Time flows downward.]

Admittedly, only the rarest circumstances make such a branching depth necessary, but
isn’t it nice to know that CVS will go as far as you’re willing to take it? Nested branches are
created the same way as any other branch: Check out a working copy on branch N, run cvs
tag -b branchname in it, and you’ll create branch N.M in the repository (where N represents
the appropriate branch revision number in each file, such as 1.5.2.1, and M represents the
next available branch at the end of that number, such as 2).

Open Source Development With CVS

Merging Changes From Branch To Trunk

Now that the bug fix has been committed on the branch, let’s switch the working copy
over to the highest trunk revisions and see if the bug fix needs to be done there, too. We’ll
move the working copy off the branch by using update -A (branch tags are like other sticky
properties in this respect) and then diffing against the branch we just left:

floss$ cvs -q update -d -A

U hello.c

U b-subdir/random.c

floss$ cvs -q diff -c -r Release-1999_05_01-bugfixes
Index: hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.5.2.1

retrieving revision 1.6

diff -¢ -r1.5.2.1 -r1.6

**x* hello.c 1999/05/05 00:15:07 1.56.2.1
-—- hello.c 1999/05/04 20:19:16 1.6
ok ok ok ok ok ok ok ok ok ok ok ok o ok
*kk 4,9 Kokkk
main ()
{

printf ("Hello, world!\n");
! printf ("between hello and good-bye\n");
printf ("Goodbye, world!\n");

}

-— 4,10 --
main ()
{

printf ("Hello, world!\n");

! printf ("between hello and goodbye\n");
printf ("Goodbye, world!\n");

+ /* a comment on the last line */

}

Index: b-subdir/random.c

RCS file: /usr/local/cvs/myproj/b-subdir/random.c,v
retrieving revision 1.2.2.1

retrieving revision 1.2

diff -¢ -r1.2.2.1 -r1.2

*** b-subdir/random.c 1999/05/05 00:15:07
--- b-subdir/random.c 1999/04/19 06:35:27
sk K ok Kok ook ook ok o K o

*kk 4 8 kkkk
void main ()

{

An Overview of CVS

! printf ("A random number.\n");

}
—_— 4’8 —_
void main ()
{
! printf ("a random number\n");
}
floss$

The diff shows that good-bye is spelled with a hyphen in the branch revision of hello.c,
and that the trunk revision of that file has a comment near the end that the branch revision
doesn’t have. Meanwhile, in random.c, the branch revision has a capital "A" and a period,
whereas the trunk doesn’t.

To actually merge the branch changes into the current working copy, run update with
the -j flag (the same j for "join" that we used to revert a file to an old revision before):

floss$ cvs —q update -d -j Release-1999_05_01-bugfixes
RCS file: /usr/local/cvs/myproj/hello.c,v

retrieving revision 1.5

retrieving revision 1.5.2.1

Merging differences between 1.5 and 1.5.2.1 into hello.c
RCS file: /usr/local/cvs/myproj/b-subdir/random.c,v
retrieving revision 1.2

retrieving revision 1.2.2.1

Merging differences between 1.2 and 1.2.2.1 into random.c
floss$ cvs —-q update

M hello.c

M b-subdir/random.c

floss$ cvs -q ci —-m "merged from branch Release-1999_05_01-bugfixes"
Checking in hello.c;

/usr/local/cvs/myproj/hello.c,v <- hello.c

new revision: 1.7; previous revision: 1.6

done

Checking in b-subdir/random.c;
/usr/local/cvs/myproj/b-subdir/random.c,v <- random.c
new revision: 1.3; previous revision: 1.2

done

floss$

This takes the changes from the branch’s root to its tip and merges them into the current
working copy (which subsequently shows those modifications just as though the files had
been hand-edited into that state). The changes are then committed onto the trunk, since
nothing in the repository changed when a working copy underwent a merge.

Although no conflicts were encountered in this example, it’s quite possible (even proba-
ble) that there would be some in a normal merge. If that happens, they need to be resolved
like any other conflict, and then committed.

Open Source Development With CVS

Multiple Merges

Sometimes a branch will continue to be actively developed even after the trunk has under-
gone a merge from it. For example, this can happen if a second bug in the previous public
release is discovered and has to be fixed on the branch. Maybe someone didn’t get the joke
in random.c, so on the branch, you have to add a line explaining it

floss$ pwd
/home/whatever/myproj_branch
floss$ cat b-subdir/random.c

/* Print out a random number. */
#include <stdio.h>

void main ()

{
print